图像处理中的采样与量化

时间:2024-03-15 09:10:31

因为自己是一枚图像处理领域的研究生菜鸟,即将从事的方向是图像处理下的图像融合方向,故,把我自己学习中遇到的不太明白的知识列下来,留作纪念,加深印象与理解。
从广义上说,图像是自然界景物的客观反映。以照片形式或视频记录介质保存的图像是连续的,计算机无法接收和
处理这种空间分布和亮度取值均连续分布的图像。图像数字化就是将连续图像离散化,其工作包括两个方面:
取样和量化。
那么,究竟什么是采样,什么又是量化呢?
所谓采样,就是把一幅连续图像在空间上分割成M×N个网格,每个网格用一亮度值来表示。一个网格称为一个像素。M×N的取值满足采样定理。
图像处理中的采样与量化
而量化就是把采样点上对应的亮度连续变化区间转换为单个特定数码的过程。量化后,图像就被表示成一个整数矩阵。每个像素具有两个属性:位置和灰度。位置由行、列表示。灰度表示该像素位置上亮暗程度的整数。此数字矩阵M×N就作为计算机处理的对象了。灰度级一般为0-255(8bit量化)。
图像处理中的采样与量化
在现实生活中,采集到的图像都需要经过离散化变成数字图像后才能被计算机识别和处理。
图像处理中的采样与量化
采样又可分为均匀采样和非均匀采样。
图像均匀采样量化——像素灰度值在黑白范围较均匀分布的图像。
图像非均匀采样量化——对图像中像素灰度值频繁出现的灰度值范围,量化间隔取小一些,而对那些像素灰度值极少出现的范围,则量化间隔取大一些。
图像处理中的采样与量化
通过自己查资料整理,终于对图像的采样与量化过程有了最基本的了解,不像刚开始写之前,懵懵懂懂的,就感觉听了好多遍这两个词,但就是不知道他两是干啥用的。谨以此文,纪念之。

相关文章