题意:给定两个圆环,求两个圆环相交的面积。
思路:由于圆心和半径不一样,分了好多种情况,后来发现只要把两个圆相交的函数写好之后就不需要那么复杂了。两个圆相交的面积的模板如下:
double area_of_overlap(point c1, double r1, point c2, double r2)
{
double d = dist(c1, c2);
if (sgn(d - r1 - r2) >= ) return ;
if (sgn(fabs(r1 - r2) - d) >= )
{
double r = min(r1, r2);
return PI * r * r;
}
double x = (d * d + r1 * r1 - r2 * r2) / (2.0 * d);
double t1 = acos(x / r1);
double t2 = acos((d - x) / r2);
return r1 * r1 * t1 + r2 * r2 * t2 - d * r1 * sin(t1);
}
其实是求的这个面积:
完整代码如下:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm> using namespace std;
typedef long long ll;
const double eps = 1e-;
const double PI = acos() * ;
int sgn(double x)//精度控制函数
{
if (fabs(x) < eps) return ;
return x > ? : -;
}
//点的定义
struct point {
double x, y;
point (double x = , double y = ):x(x), y(y) {}
};
//获得两点的距离
double dist(const point &a, const point &b)
{
double x = (a.x - b.x) * (a.x - b.x);
double y = (a.y - b.y) * (a.y - b.y);
return sqrt(x + y);
}
//求两个圆相交的面积,如果不相交返回0,c1为第一个圆心坐标,r1为第一个圆的半径,c2为第二个圆心坐标, r2为第二个圆的半径
double area_of_overlap(point c1, double r1, point c2, double r2)
{
double d = dist(c1, c2);
if (sgn(d - r1 - r2) >= ) return ;
if (sgn(fabs(r1 - r2) - d) >= )
{
double r = min(r1, r2);
return PI * r * r;
}
double x = (d * d + r1 * r1 - r2 * r2) / (2.0 * d);
double t1 = acos(x / r1);
double t2 = acos((d - x) / r2);
return r1 * r1 * t1 + r2 * r2 * t2 - d * r1 * sin(t1);
}//下面此题求两个圆环相交的面积
int main()
{
int T, kase = ;
point a, b;
double r, R;
scanf("%d", &T);
while (T--)
{
scanf("%lf %lf", &r, &R);
scanf("%lf %lf %lf %lf", &a.x, &a.y, &b.x, &b.y);
double tot = area_of_overlap(a, R, b, R);
double s1 = area_of_overlap(a, R, b, r);
double s2 = area_of_overlap(a, r, b, r);
printf("Case #%d: %.6f\n", ++kase, tot - 2.0 * s1 + s2);
}
return ;
}