进制转换方法汇总

时间:2024-02-25 12:19:14
计算机中常用的数的进制主要有:二进制、八进制、十六进制,学习计算机要对其有所了解。
2进制,用两个阿拉伯数字:0、1;
8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;
10进制,用十个阿拉伯数字:0到9;
16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。

以下简介各种进制之间的转换方法:
一、二进制转换十进制
例:二进制 “1101100”
1101100    ←二进制数
6543210    ←排位方法

例如二进制换算十进制的算法:
        1*26 + 1*25 + 0*24 + 1*23 + 1* 22 + 0*21 + 0*20
        ↑    ↑
说明:2代表进制,后面的数是次方(从右往左数,以0开始)
=64+32+0+8+4+0+0
=108

二、二进制换算八进制
例:二进制的“10110111011”
换八进制时,从右到左,三位一组,不够补0,即成了:
010 110 111 011
然后每组中的3个数分别对应4、2、1的状态,然后将为状态为1的相加,如:
010 = 2
110 = 4+2 = 6
111 = 4+2+1 = 7
011 = 2+1 = 3
结果为:2673

三、二进制转换十六进制
十六进制换二进制的方法也类似,只要每组4位,分别对应8、4、2、1就行了,如分解为:
0101 1011 1011
运算为:
0101 = 4+1 = 5
1011 = 8+2+1 = 11(由于10为A,所以11即B)
1011 = 8+2+1 = 11(由于10为A,所以11即B)
结果为:5BB

四、二进制数转换为十进制数
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
所以,设有一个二进制数:0110 0100,转换为10进制为:
计算: 0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100

五、八进制数转换为十进制数
八进制就是逢8进1。
八进制数采用 0~7这八数来表达一个数。
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……
所以,设有一个八进制数:1507,转换为十进制为:
计算: 7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839
结果是,八进制数 1507 转换成十进制数为 839

六、十六进制转换十进制
例:2AF5换算成10进制
直接计算就是: 5 * 160 + F * 161 + A * 162 + 2 * 163 = 10997
(别忘了,在上面的计算中,A表示10,而F表示15)、

现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。
假设有人问你,十进数 1234 为什么是 一千二百三十四?你尽可以给他这么一个算式: 1234 = 1 * 103 + 2 * 102 + 3 * 101 + 4 * 100