本文介绍了spring boot使用sharding jdbc的配置方式,分享给大家,具体如下:
说明
要排除DataSourceAutoConfiguration,否则多数据源无法配置
1
2
3
4
5
6
7
8
9
|
@SpringBootApplication
@EnableAutoConfiguration (exclude={DataSourceAutoConfiguration. class })
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application. class , args);
}
}
|
配置的多个数据源交给sharding-jdbc管理,sharding-jdbc创建一个DataSource数据源提供给mybatis使用
官方文档:http://shardingjdbc.io/index_zh.html
步骤
配置多个数据源,数据源的名称最好要有一定的规则,方便配置分库的计算规则
1
2
3
4
5
6
7
8
9
10
11
|
@Bean (initMethod= "init" , destroyMethod= "close" , name= "dataSource0" )
@ConfigurationProperties (prefix = "spring.datasource" )
public DataSource dataSource0(){
return new DruidDataSource();
}
@Bean (initMethod= "init" , destroyMethod= "close" , name= "dataSource1" )
@ConfigurationProperties (prefix = "spring.datasource2" )
public DataSource dataSource1(){
return new DruidDataSource();
}
|
配置数据源规则,即将多个数据源交给sharding-jdbc管理,并且可以设置默认的数据源,当表没有配置分库规则时会使用默认的数据源
1
2
3
4
5
6
7
8
|
@Bean
public DataSourceRule dataSourceRule( @Qualifier ( "dataSource0" ) DataSource dataSource0,
@Qualifier ( "dataSource1" ) DataSource dataSource1){
Map<String, DataSource> dataSourceMap = new HashMap<>();
dataSourceMap.put( "dataSource0" , dataSource0);
dataSourceMap.put( "dataSource1" , dataSource1);
return new DataSourceRule(dataSourceMap, "dataSource0" );
}
|
配置数据源策略和表策略,具体策略需要自己实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
@Bean
public ShardingRule shardingRule(DataSourceRule dataSourceRule){
//表策略
TableRule orderTableRule = TableRule.builder( "t_order" )
.actualTables(Arrays.asList( "t_order_0" , "t_order_1" ))
.tableShardingStrategy( new TableShardingStrategy( "order_id" , new ModuloTableShardingAlgorithm()))
.dataSourceRule(dataSourceRule)
.build();
TableRule orderItemTableRule = TableRule.builder( "t_order_item" )
.actualTables(Arrays.asList( "t_order_item_0" , "t_order_item_1" ))
.tableShardingStrategy( new TableShardingStrategy( "order_id" , new ModuloTableShardingAlgorithm()))
.dataSourceRule(dataSourceRule)
.build();
//绑定表策略,在查询时会使用主表策略计算路由的数据源,因此需要约定绑定表策略的表的规则需要一致,可以一定程度提高效率
List<BindingTableRule> bindingTableRules = new ArrayList<BindingTableRule>();
bindingTableRules.add( new BindingTableRule(Arrays.asList(orderTableRule, orderItemTableRule)));
return ShardingRule.builder()
.dataSourceRule(dataSourceRule)
.tableRules(Arrays.asList(orderTableRule, orderItemTableRule))
.bindingTableRules(bindingTableRules)
.databaseShardingStrategy( new DatabaseShardingStrategy( "user_id" , new ModuloDatabaseShardingAlgorithm()))
.tableShardingStrategy( new TableShardingStrategy( "order_id" , new ModuloTableShardingAlgorithm()))
.build();
}
|
创建sharding-jdbc的数据源DataSource,MybatisAutoConfiguration会使用此数据源
1
2
3
4
|
@Bean ( "dataSource" )
public DataSource shardingDataSource(ShardingRule shardingRule){
return ShardingDataSourceFactory.createDataSource(shardingRule);
}
|
需要手动配置事务管理器(原因未知)
1
2
3
4
5
|
//需要手动声明配置事务
@Bean
public DataSourceTransactionManager transactitonManager( @Qualifier ( "dataSource" ) DataSource dataSource){
return new DataSourceTransactionManager(dataSource);
}
|
分库策略的简单实现,接口:DatabaseShardingAlgorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
import java.util.Collection;
import java.util.LinkedHashSet;
import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.database.SingleKeyDatabaseShardingAlgorithm;
import com.google.common.collect.Range;
/**
* Created by fuwei.deng on 2017年5月11日.
*/
public class ModuloDatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm<Long> {
@Override
public String doEqualSharding(Collection<String> databaseNames, ShardingValue<Long> shardingValue) {
for (String each : databaseNames) {
if (each.endsWith(shardingValue.getValue() % 2 + "" )) {
return each;
}
}
throw new IllegalArgumentException();
}
@Override
public Collection<String> doInSharding(Collection<String> databaseNames, ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(databaseNames.size());
for (Long value : shardingValue.getValues()) {
for (String tableName : databaseNames) {
if (tableName.endsWith(value % 2 + "" )) {
result.add(tableName);
}
}
}
return result;
}
@Override
public Collection<String> doBetweenSharding(Collection<String> databaseNames, ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(databaseNames.size());
Range<Long> range = (Range<Long>) shardingValue.getValueRange();
for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
for (String each : databaseNames) {
if (each.endsWith(i % 2 + "" )) {
result.add(each);
}
}
}
return result;
}
}
|
分表策略的基本实现,接口:TableShardingAlgorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
import java.util.Collection;
import java.util.LinkedHashSet;
import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.SingleKeyTableShardingAlgorithm;
import com.google.common.collect.Range;
/**
* Created by fuwei.deng on 2017年5月11日.
*/
public class ModuloTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Long> {
@Override
public String doEqualSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) {
for (String each : tableNames) {
if (each.endsWith(shardingValue.getValue() % 2 + "" )) {
return each;
}
}
throw new IllegalArgumentException();
}
@Override
public Collection<String> doInSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(tableNames.size());
for (Long value : shardingValue.getValues()) {
for (String tableName : tableNames) {
if (tableName.endsWith(value % 2 + "" )) {
result.add(tableName);
}
}
}
return result;
}
@Override
public Collection<String> doBetweenSharding(Collection<String> tableNames, ShardingValue<Long> shardingValue) {
Collection<String> result = new LinkedHashSet<>(tableNames.size());
Range<Long> range = (Range<Long>) shardingValue.getValueRange();
for (Long i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
for (String each : tableNames) {
if (each.endsWith(i % 2 + "" )) {
result.add(each);
}
}
}
return result;
}
}
|
至此,分库分表的功能已经实现
读写分离
读写分离需在创建DataSourceRule之前加一层主从数据源的创建
1
2
3
4
5
6
7
8
9
10
11
12
13
|
// 构建读写分离数据源, 读写分离数据源实现了DataSource接口, 可直接当做数据源处理.
// masterDataSource0, slaveDataSource00, slaveDataSource01等为使用DBCP等连接池配置的真实数据源
DataSource masterSlaveDs0 = MasterSlaveDataSourceFactory.createDataSource( "ms_0" ,
masterDataSource0, slaveDataSource00, slaveDataSource01);
DataSource masterSlaveDs1 = MasterSlaveDataSourceFactory.createDataSource( "ms_1" ,
masterDataSource1, slaveDataSource11, slaveDataSource11);
// 构建分库分表数据源
Map<String, DataSource> dataSourceMap = new HashMap<>( 2 );
dataSourceMap.put( "ms_0" , masterSlaveDs0);
dataSourceMap.put( "ms_1" , masterSlaveDs1);
// 通过ShardingDataSourceFactory继续创建ShardingDataSource
|
强制使用主库时
1
2
3
|
HintManager hintManager = HintManager.getInstance();
hintManager.setMasterRouteOnly();
// 继续JDBC操作
|
强制路由
- 使用ThreadLocal机制实现,在执行数据库操作之前通过HintManager改变用于计算路由的值
- 设置HintManager的时候分库和分表的策略必须同时设置,并且设置后需要路由的表都需要设置用于计算路由的值。比如强制路由后需要操作t_order和t_order_item两个表,那么两个表的分库和分表的策略都需要设置
1
2
3
4
5
|
HintManager hintManager = HintManager.getInstance();
hintManager.addDatabaseShardingValue( "t_order" , "user_id" , 1L);
hintManager.addTableShardingValue( "t_order" , "order_id" , order.getOrderId());
hintManager.addDatabaseShardingValue( "t_order_item" , "user_id" , 1L);
hintManager.addTableShardingValue( "t_order_item" , "order_id" , order.getOrderId());
|
事务
- sharding-jdbc-transaction实现柔性事务(默认提供了基于内存的事务日志存储器和内嵌异步作业),可结合elastic-job(sharding-jdbc-transaction-async-job)实现异步柔性事务
- 没有与spring结合使用的方式,需要自己封装
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://my.oschina.net/dengfuwei/blog/1595151