看到了当当开源的sharding-jdbc组件,它可以在几乎不修改代码的情况下完成分库分表的实现。摘抄其中一段介绍:
sharding-jdbc直接封装jdbc api,可以理解为增强版的jdbc驱动,旧代码迁移成本几乎为零:
- 可适用于任何基于java的orm框架,如:jpa, hibernate, mybatis, spring jdbc template或直接使用jdbc。
- 可基于任何第三方的数据库连接池,如:dbcp, c3p0, bonecp, druid等。
- 理论上可支持任意实现jdbc规范的数据库。虽然目前仅支持mysql,但已有支持oracle,sqlserver,db2等数据库的计划。
先做一个最简单的试用,不做分库,仅做分表。选择数据表bead_information,首先复制成三个表:bead_information_0、bead_information_1、bead_information_2
测试实现过程
前提:已经实现srping+mybatis对单库单表做增删改查的项目。
1、修改pom.xml增加dependency
1
2
3
4
5
6
7
8
9
10
|
<dependency>
<groupid>com.dangdang</groupid>
<artifactid>sharding-jdbc-core</artifactid>
<version> 1.4 . 2 </version>
</dependency>
<dependency>
<groupid>com.dangdang</groupid>
<artifactid>sharding-jdbc-config-spring</artifactid>
<version> 1.4 . 0 </version>
</dependency>
|
2、新建一个sharding-jdbc.xml文件,实现分库分表的配置
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
|
<?xml version= "1.0" encoding= "utf-8" ?>
<beans xmlns= "http://www.springframework.org/schema/beans"
xmlns:xsi= "http://www.w3.org/2001/xmlschema-instance"
xmlns:context= "http://www.springframework.org/schema/context"
xmlns:tx= "http://www.springframework.org/schema/tx"
xmlns:rdb= "http://www.dangdang.com/schema/ddframe/rdb"
xsi:schemalocation="http: //www.springframework.org/schema/beans
http: //www.springframework.org/schema/beans/spring-beans.xsd
http: //www.springframework.org/schema/tx
http: //www.springframework.org/schema/tx/spring-tx.xsd
http: //www.springframework.org/schema/context
http: //www.springframework.org/schema/context/spring-context.xsd
http: //www.dangdang.com/schema/ddframe/rdb
http: //www.dangdang.com/schema/ddframe/rdb/rdb.xsd">
<!-- 配置数据源 -->
<bean name= "datasource" class = "com.alibaba.druid.pool.druiddatasource" init-method= "init" destroy-method= "close" >
<property name= "url" value= "jdbc:mysql://localhost:3306/beadhouse" />
<property name= "username" value= "root" />
<property name= "password" value= "123456" />
</bean>
<rdb:strategy id= "tableshardingstrategy" sharding-columns= "id" algorithm- class = "com.springdemo.utill.membersinglekeytableshardingalgorithm" />
<rdb:data-source id= "shardingdatasource" >
<rdb:sharding-rule data-sources= "datasource" >
<rdb:table-rules>
<rdb:table-rule logic-table= "bead_information" actual-tables= "bead_information_${0..2}" table-strategy= "tableshardingstrategy" />
</rdb:table-rules>
</rdb:sharding-rule>
</rdb:data-source>
<bean id= "transactionmanager" class = "org.springframework.jdbc.datasource.datasourcetransactionmanager" >
<property name= "datasource" ref= "shardingdatasource" />
</bean>
</beans>
|
3、将文件引入spring配置文件中。
需要修改几个地方,把sqlsessionfactory和transactionmanager原来关联的datasource统一修改为shardingdatasource(这一步作用就是把数据源全部托管给sharding去管理)
4、实现分表(分库)逻辑,我们的分表逻辑类需要实现singlekeytableshardingalgorithm接口的三个方法dobetweensharding、doequalsharding、doinsharding
(取模除数需要按照自己需求改变,我这里分3个表,所以除以3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
import java.util.collection;
import java.util.linkedhashset;
import com.dangdang.ddframe.rdb.sharding.api.shardingvalue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.singlekeytableshardingalgorithm;
import com.google.common.collect.range;
public class membersinglekeytableshardingalgorithm implements singlekeytableshardingalgorithm<integer> {
@override
public collection<string> dobetweensharding(collection<string> tablenames, shardingvalue<integer> shardingvalue) {
collection<string> result = new linkedhashset<string>(tablenames.size());
range<integer> range = (range<integer>) shardingvalue.getvaluerange();
for (integer i = range.lowerendpoint(); i <= range.upperendpoint(); i++) {
integer modvalue = i % 3 ;
string modstr = modvalue < 3 ? "" + modvalue : modvalue.tostring();
for (string each : tablenames) {
if (each.endswith(modstr)) {
result.add(each);
}
}
}
return result;
}
@override
public string doequalsharding(collection<string> tablenames, shardingvalue<integer> shardingvalue) {
integer modvalue = shardingvalue.getvalue() % 3 ;
string modstr = modvalue < 3 ? "" + modvalue : modvalue.tostring();
for (string each : tablenames) {
if (each.endswith(modstr)) {
return each;
}
}
throw new illegalargumentexception();
}
@override
public collection<string> doinsharding(collection<string> tablenames, shardingvalue<integer> shardingvalue) {
collection<string> result = new linkedhashset<string>(tablenames.size());
for (integer value : shardingvalue.getvalues()) {
integer modvalue = value % 3 ;
string modstr = modvalue < 3 ? "" + modvalue : modvalue.tostring();
for (string tablename : tablenames) {
if (tablename.endswith(modstr)) {
result.add(tablename);
}
}
}
return result;
}
}
|
5、配置完成,可以实现增删改查测试。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/huangheng01/p/9366325.html