话不多说,干就完了。
变量重命名的用处?
简单定义:简单来说就是将模型A中的参数parameter_A赋给模型B中的parameter_B
使用场景:当需要使用已经训练好的模型参数,尤其是使用别人训练好的模型参数时,往往别人模型中的参数命名方式与自己当前的命名方式不同,所以在加载模型参数时需要对参数进行重命名,使得代码更简洁易懂。
实现方法:
1)、模型保存
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
import os
import tensorflow as tf
weights = tf.Variable(initial_value = tf.truncated_normal(shape = [ 1024 , 2 ],
mean = 0.0 ,
stddev = 0.1 ),
dtype = tf.float32,
name = "weights" )
biases = tf.Variable(initial_value = tf.zeros(shape = [ 2 ]),
dtype = tf.float32,
name = "biases" )
weights_2 = tf.Variable(initial_value = weights.initialized_value(),
dtype = tf.float32,
name = "weights_2" )
# saver checkpoint
if os.path.exists( "checkpoints" ) is False :
os.makedirs( "checkpoints" )
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = [tf.global_variables_initializer()]
sess.run(init_op)
saver.save(sess = sess, save_path = "checkpoints/variable.ckpt" )
|
2)、模型加载(变量名称保持不变)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
import tensorflow as tf
from matplotlib import pyplot as plt
import os
current_path = os.path.dirname(os.path.abspath(__file__))
def restore_variable(sess):
# need not initilize variable, but need to define the same variable like checkpoint
weights = tf.Variable(initial_value = tf.truncated_normal(shape = [ 1024 , 2 ],
mean = 0.0 ,
stddev = 0.1 ),
dtype = tf.float32,
name = "weights" )
biases = tf.Variable(initial_value = tf.zeros(shape = [ 2 ]),
dtype = tf.float32,
name = "biases" )
weights_2 = tf.Variable(initial_value = weights.initialized_value(),
dtype = tf.float32,
name = "weights_2" )
saver = tf.train.Saver()
ckpt_path = os.path.join(current_path, "checkpoints" , "variable.ckpt" )
saver.restore(sess = sess, save_path = ckpt_path)
weights_val, weights_2_val = sess.run(
[
tf.reshape(weights, shape = [ 2048 ]),
tf.reshape(weights_2, shape = [ 2048 ])
]
)
plt.subplot( 1 , 2 , 1 )
plt.scatter([i for i in range ( len (weights_val))], weights_val)
plt.subplot( 1 , 2 , 2 )
plt.scatter([i for i in range ( len (weights_2_val))], weights_2_val)
plt.show()
if __name__ = = '__main__' :
with tf.Session() as sess:
restore_variable(sess)
|
3)、模型加载(变量重命名)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
import tensorflow as tf
from matplotlib import pyplot as plt
import os
current_path = os.path.dirname(os.path.abspath(__file__))
def restore_variable_renamed(sess):
conv1_w = tf.Variable(initial_value = tf.truncated_normal(shape = [ 1024 , 2 ],
mean = 0.0 ,
stddev = 0.1 ),
dtype = tf.float32,
name = "conv1_w" )
conv1_b = tf.Variable(initial_value = tf.zeros(shape = [ 2 ]),
dtype = tf.float32,
name = "conv1_b" )
conv2_w = tf.Variable(initial_value = conv1_w.initialized_value(),
dtype = tf.float32,
name = "conv2_w" )
# variable named 'weights' in ckpt assigned to current variable conv1_w
# variable named 'biases' in ckpt assigned to current variable conv1_b
# variable named 'weights_2' in ckpt assigned to current variable conv2_w
saver = tf.train.Saver({
"weights" : conv1_w,
"biases" : conv1_b,
"weights_2" : conv2_w
})
ckpt_path = os.path.join(current_path, "checkpoints" , "variable.ckpt" )
saver.restore(sess = sess, save_path = ckpt_path)
conv1_w__val, conv2_w__val = sess.run(
[
tf.reshape(conv1_w, shape = [ 2048 ]),
tf.reshape(conv2_w, shape = [ 2048 ])
]
)
plt.subplot( 1 , 2 , 1 )
plt.scatter([i for i in range ( len (conv1_w__val))], conv1_w__val)
plt.subplot( 1 , 2 , 2 )
plt.scatter([i for i in range ( len (conv2_w__val))], conv2_w__val)
plt.show()
if __name__ = = '__main__' :
with tf.Session() as sess:
restore_variable_renamed(sess)
|
总结:
# 之前模型中叫 'weights'的变量赋值给当前的conv1_w变量
# 之前模型中叫 'biases' 的变量赋值给当前的conv1_b变量
# 之前模型中叫 'weights_2'的变量赋值给当前的conv2_w变量
saver = tf.train.Saver({
"weights": conv1_w,
"biases": conv1_b,
"weights_2": conv2_w
})
以上这篇tensorflow模型保存、加载之变量重命名实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/cxx654/article/details/88927962