RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。
MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import Queue
import threading message = Queue.Queue(10) def producter(i): while True:
message.put(i) def consumer(i):
while True:
message.get() for i in range(5):
w = threading.Thread(target=producter,args=(i,))
w.start() for i in range(2):
w = threading.Thread(target=consumer,args=(i,))
w.start()
生产者消费者模型
对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.1.108')) #连接一台rabbitMQ channel = connection.channel() #创建一个频道 channel.queue_declare("chenchao") #声明一个消息队列 channel.basic_publish(exchange='',routing_key="chenchao",body="Fucking!") #发送消息 print "sent Fucking world!!!!" connection.close() #关闭连接
生产者
#!/usr/bin/env python
# _*_coding:utf-8 _*_ # #############################消费者######################## import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.1.108')) channel = connection.channel() channel.queue_declare("chenchao") def callback(ch, method, properties, body): #固定格式 必须有4个参数
print body channel.basic_consume(callback,queue="chenchao",no_ack=True) #将从队列里取出的数据回调给callback方法 channel.start_consuming() #开始取值
消费者
1、acknowledgment 消息不丢失
no-ack = False,如果在传递消息的过程中消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务消息添加到队列中。
#!/usr/bin/env python
# _*_coding:utf-8 _*_ # #############################消费者######################## import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.1.108')) channel = connection.channel() channel.queue_declare("chenchao") def callback(ch, method, properties, body): #固定格式 必须有4个参数
print body
import time
time.sleep(8)
print "sleep over"
ch.basic_ack(delivery_tag = method.delivery_tag ) #向生产者发送应答 channel.basic_consume(callback,queue="chenchao",no_ack=False) #将从队列里取出的数据回调给callback方法 channel.start_consuming() #开始取值
消费者
ch.basic_ack(delivery_tag = method.delivery_tag ) #向生产者发送应答,表示已经接收到了数据
no_ack=False
2、durable 消息不丢失
如果之前的队列为非持久化的,那么之后就不能将其修改为持久化的,必须重新创建一个新的队列,并声明为持久化的队列,并且在发送消息时也要注明是持久化消息才行。
#!/usr/bin/env python
# _*_coding:utf-8 _*_ # #######################生产者###################### import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.1.108')) #连接一台rabbitMQ channel = connection.channel() #创建一个频道 channel.queue_declare("chenchao2",durable=True) #声明一个消息队列为持久化的队列 channel.basic_publish(exchange='',
routing_key="chenchao2",
body="Message NO.1",
properties=pika.BasicProperties(delivery_mode=2,)) #发送消息为持久化的数据 print "sent Message OK!" connection.close() #关闭连接
生产者
durable=True
properties=pika.BasicProperties(delivery_mode=2,)
#!/usr/bin/env python
# _*_coding:utf-8 _*_ # #############################消费者######################## import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.1.108')) channel = connection.channel() channel.queue_declare("chenchao2",durable=True) #生命一个可持续化的队列(如果队列已经存在,这句可有可无) def callback(ch, method, properties, body): #固定格式 必须有4个参数
print body
import time
time.sleep(8)
print "sleep over"
ch.basic_ack(delivery_tag = method.delivery_tag ) #向生产者发送应答 channel.basic_consume(callback,queue="chenchao2",no_ack=False) #将从队列里取出的数据回调给callback方法 channel.start_consuming() #开始取值
消费者
3、消息获取顺序
默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。
channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列
#!/usr/bin/env python
# _*_coding:utf-8 _*_ # #############################消费者######################## import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host='192.168.1.108')) channel = connection.channel() channel.queue_declare("chenchao2",durable=True) #生命一个可持续化的队列(如果队列已经存在,这句可有可无) def callback(ch, method, properties, body): #固定格式 必须有4个参数
print body
import time
time.sleep(8)
print "sleep over"
ch.basic_ack(delivery_tag = method.delivery_tag ) #向生产者发送应答 channel.basic_qos(prefetch_count=1) #获取消息不在按奇偶规则获取 channel.basic_consume(callback,queue="chenchao2",no_ack=False) #将从队列里取出的数据回调给callback方法 channel.start_consuming() #开始取值
消费者
4、发布订阅
发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.1.108'))
channel = connection.channel() channel.exchange_declare(exchange='chenchao',
type='fanout') #声明一个名称为chenchao的exchange 类型为fanout message = ' '.join(sys.argv[1:]) or "info: Hello every consumer2"
channel.basic_publish(exchange='chenchao',
routing_key='',
body=message) #将消息发送到exchange里,通过exchange发送到所有队列
print(" [x] Sent %r" % message)
connection.close()
发布者
channel.exchange_declare(exchange='chenchao',
type='fanout') #声明一个名称为chenchao的exchange 类型为fanout
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.1.108'))
channel = connection.channel() channel.exchange_declare(exchange='chenchao',
type='fanout') #声明类型为fanou名称为chenchao的exchange result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue #生成一个随机名的队列 channel.queue_bind(exchange='chenchao',
queue=queue_name) #将队列与exchange绑定 print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r" % body) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
订阅者
channel.queue_bind(exchange='chenchao',
queue=queue_name) #将队列与exchange绑定
5、关键字发送
exchange type = direct
之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.1.108'))
channel = connection.channel() channel.exchange_declare(exchange='import',
type='direct') #声明一个名称为import的exchange 类型为direct message = ' '.join(sys.argv[1:]) or "info: Hello are you Q1???"
channel.basic_publish(exchange='import',
routing_key='Nice',
body=message) #将消息与关键字发送到exchange里,通过关键字发送到绑定的队列
print(" [x] Sent %r" % message)
connection.close()
生产者
type='direct'
routing_key='Nice'
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.1.108'))
channel = connection.channel() channel.exchange_declare(exchange='import',
type='direct') #声明类型为direct名称为import的exchange result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue #生成一个随机名的队列 channel.queue_bind(exchange='import',
queue=queue_name,
routing_key="Queue1") #将队列与exchange绑定,并声明关键字 channel.queue_bind(exchange='import',
queue=queue_name,
routing_key="Nice") #将队列与exchange绑定,并声明关键字 print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
订阅者
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.1.108'))
channel = connection.channel() channel.exchange_declare(exchange='import',
type='direct') #声明类型为direct名称为import的exchange result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue #生成一个随机名的队列 channel.queue_bind(exchange='import',
queue=queue_name,
routing_key="Queue2") #将队列与exchange绑定,并声明关键字 channel.queue_bind(exchange='import',
queue=queue_name,
routing_key="Nice") #将队列与exchange绑定,并声明关键字 print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
订阅者2
type='direct'
routing_key="Nice"
6、模糊匹配
exchange type = topic
在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。
- # 表示可以匹配 0 个 或 多个 单词
- * 表示只能匹配 一个 单词
routing_key="Nice.*"
routing_key="Nice.#"
发送者路由值 队列中
old.boy.python old.
*
-
-
不匹配
old.boy.python old.
# -- 匹配
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.1.108'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') #声明一个名称为import的exchange 类型为direct message = ' '.join(sys.argv[1:]) or "info: Are you choosed?"
channel.basic_publish(exchange='topic_logs',
routing_key='Nice',
body=message) #将消息与关键字发送到exchange里,通过关键字发送到绑定的队列
print(" [x] Sent %r" % message)
connection.close()
发布者
type='topic'
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.1.108'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') #声明类型为topic的exchange result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue #生成一个随机名的队列 channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key="Nice.*") #将队列与exchange绑定,并声明关键字 *代表只能匹配一个 print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
订阅者1
type='topic'
routing_key="Nice.*"
#!/usr/bin/env python
# _*_coding:utf-8 _*_ import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='192.168.1.108'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') #声明类型为direct名称为import的exchange result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue #生成一个随机名的队列 channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key="Nice.#") #将队列与exchange绑定,并声明关键字 #代表只能匹配0个或者多个 print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
订阅者2
routing_key="Nice.#"
python操作RabbiMQ的更多相关文章
-
Python之路:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy
Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...
-
【转】Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy
Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...
-
python操作RabbitMQ、Redis、Memcache、SQLAlchemy
Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...
-
Python菜鸟之路:Python基础-Python操作RabbitMQ
RabbitMQ简介 rabbitmq中文翻译的话,主要还是mq字母上:Message Queue,即消息队列的意思.rabbitmq服务类似于mysql.apache服务,只是提供的功能不一样.ra ...
-
Python操作 RabbitMQ、Redis、Memcache
Python操作 RabbitMQ.Redis.Memcache Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数 ...
-
Python(九) Python 操作 MySQL 之 pysql 与 SQLAchemy
本文针对 Python 操作 MySQL 主要使用的两种方式讲解: 原生模块 pymsql ORM框架 SQLAchemy 本章内容: pymsql 执行 sql 增\删\改\查 语句 pymsql ...
-
Python 【第六章】:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy
Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...
-
练习:python 操作Mysql 实现登录验证 用户权限管理
python 操作Mysql 实现登录验证 用户权限管理
-
Python操作MySQL
本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...
随机推荐
-
WinForm中为按钮添加键盘快捷键,超简单,亲测有效
博主并没有多少Windows平台下程序的开发经验,一年前使用过MFC设计过一个指纹识别系统的页面,后来就没有使用过几次.现在C#课程实验要求实现一个简易计算器,为了便于快速录入数据,使用键盘会比使用鼠 ...
-
谈谈IT人的发展[转载]
一个人如果能确定他喜欢的行业,他一生都会非常幸福. 相反,则往往痛苦,也许竟然会因此成为一个哲学家也说不定. 中国的贫穷决定了我们当中的大多数人不能根据自己的爱好来选择职业,而只是因为生活所迫,或 ...
-
java中自定义异常类
hello,大家好,今天跟大家分享一下java中如何自定义异常,以后如果有新的心得,再添加,欢迎前辈指导... 首先,上Api,看一下异常和错误的父类: 然后,现在假设我有个循环(i=0;i<1 ...
-
Android传感器
Android传感器 开发传感器应用 1. 获取传感器管理者对象 // 获取传感器管理者对象 SensorManager mSensorManager = (SensorManager) getSys ...
-
金山WPS一面
昨天下午在武汉面了一场服务端开发工程师吧,结果还未通知,是校招的, 大体上题目如下: 先自我介绍 然后是聊了一些笔试上的情况 问了spring的的作用以及优势 http的状态,三次握手四次挥手 gc的 ...
-
nodejs sass安装报错一招解决
背景: 这个问题不是一天两天了,有时候是网速不行,有时候是被墙了,有时候是github把node-sass的包转移目录导致下载失败. Cannot download "https://git ...
-
【Cucumber】【命令行】
知识点 参考:https://www.cnblogs.com/worklog/p/5253297.html cucumber的命令行选项 首先查看命令行选项.和其它命令行工具一样,cucumber提供 ...
-
关于package.json
1.dependencies和devDependenceis npm install packageName --save配置到dependencies,代表代码运行时所需要的插件(比如jquery, ...
-
AS3 内存基础
1:获取一个对象的字节数: var str:String="ddd啊"; var byte:ByteArray=new ByteArray(); byte.writeMultiBy ...
-
64位的Sql Server使用OPENROWSET导入xlsx格式的excel数据的时候报错(转载)
In the old times while all the CPUs were 32bit, we were happily using JET OLEDB Provider reaching Ex ...