概述
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(k1,k2,...,kn), 当且仅当满足:
时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)或最大项(大顶堆)。
若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点(有子女的结点)的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。
(a)大顶堆序列:(96, 83, 27, 38, 11, 09)
(b)小顶堆序列:(12, 36, 24, 85, 47, 30, 53, 91)
初始时把要排序的n 个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素。然后对剩下的n-1个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到最后得到有n个节点的有序序列。称这个过程为堆排序。
步骤&实例
实现堆排序需解决两个问题:
(1)如何将n 个待排序的数建成堆;
(2)输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。
建堆方法(小顶堆):
对初始序列建堆的过程,就是一个反复进行筛选的过程。
n 个结点的完全二叉树,则最后一个结点是第n/2个结点的子树。
筛选从第n/2个结点为根的子树开始(n/2是最后一个有子树的结点),使该子树成为堆。
之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。
如图建堆初始过程
无序序列:(49, 38, 65, 97, 76, 13, 27, 49)
(a) 无序序列,初始二叉树,97(第8/2=4个结点)为最后一个结点(49)的父结点。
(b) 97>=49,替换位置,接下来对n/2的上一个结点65进行筛选。
(c) 13<=27且65>=13,替换65和13的位置,接下来对38进行替换(都大于它,不需操作),对49进行筛选。
(d) 13<=38且49>=13,替换49和13的位置,49>=27,替换49和27的位置。
(e) 最终得到一个堆,13是我们得到的最小数。
调整堆的方法(小顶堆):
设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶,堆被破坏,其原因仅是根结点不满足堆的性质。
将根结点与左、右子树中较小元素的进行交换。
若与左子树交换:如果左子树堆被破坏,则重复方法(2).
若与右子树交换,如果右子树堆被破坏,则重复方法(2).
继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。
调整堆只需考虑被破坏的结点,其他的结点不需调整。
代码实现(Java)
运行代码结合注释与上面的实例步骤进行对比思考。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
package com.coder4j.main;
public class HeapSort {
/**
* 调整为小顶堆(排序后结果为从大到小)
*
* @param array是待调整的堆数组
* @param s是待调整的数组元素的位置
* @param length是数组的长度
*
*/
public static void heapAdjustS( int [] array, int s, int length) {
int tmp = array[s];
int child = 2 * s + 1 ; // 左孩子结点的位置
System.out.println( "待调整结点为:array[" + s + "] = " + tmp);
while (child < length) {
// child + 1 是当前调整结点的右孩子
// 如果有右孩子且小于左孩子,使用右孩子与结点进行比较,否则使用左孩子
if (child + 1 < length && array[child] > array[child + 1 ]) {
child++;
}
System.out.println( "将与子孩子 array[" + child + "] = " + array[child] + " 进行比较" );
// 如果较小的子孩子比此结点小
if (array[s] > array[child]) {
System.out.println( "子孩子比其小,交换位置" );
array[s] = array[child]; // 把较小的子孩子向上移动,替换当前待调整结点
s = child; // 待调整结点移动到较小子孩子原来的位置
array[child] = tmp;
child = 2 * s + 1 ; // 继续判断待调整结点是否需要继续调整
if (child >= length) {
System.out.println( "没有子孩子了,调整结束" );
} else {
System.out.println( "继续与新的子孩子进行比较" );
}
// continue;
} else {
System.out.println( "子孩子均比其大,调整结束" );
break ; // 当前待调整结点小于它的左右孩子,不需调整,直接退出
}
}
}
/**
* 调整为大顶堆(排序后结果为从小到大)
*
* @param array是待调整的堆数组
* @param s是待调整的数组元素的位置
* @param length是数组的长度
*
*/
public static void heapAdjustB( int [] array, int s, int length) {
int tmp = array[s];
int child = 2 * s + 1 ; // 左孩子结点的位置
System.out.println( "待调整结点为:array[" + s + "] = " + tmp);
while (child < length) {
// child + 1 是当前调整结点的右孩子
// 如果有右孩子且大于左孩子,使用右孩子与结点进行比较,否则使用左孩子
if (child + 1 < length && array[child] < array[child + 1 ]) {
child++;
}
System.out.println( "将与子孩子 array[" + child + "] = " + array[child] + " 进行比较" );
// 如果较大的子孩子比此结点大
if (array[s] < array[child]) {
System.out.println( "子孩子比其大,交换位置" );
array[s] = array[child]; // 把较大的子孩子向上移动,替换当前待调整结点
s = child; // 待调整结点移动到较大子孩子原来的位置
array[child] = tmp;
child = 2 * s + 1 ; // 继续判断待调整结点是否需要继续调整
if (child >= length) {
System.out.println( "没有子孩子了,调整结束" );
} else {
System.out.println( "继续与新的子孩子进行比较" );
}
// continue;
} else {
System.out.println( "子孩子均比其小,调整结束" );
break ; // 当前待调整结点大于它的左右孩子,不需调整,直接退出
}
}
}
/**
* 堆排序算法
*
* @param array
* @param inverse true 为倒序排列,false 为正序排列
*/
public static void heapSort( int [] array, boolean inverse) {
// 初始堆
// 最后一个有孩子的结点位置 i = (length - 1) / 2, 以此向上调整各结点使其符合堆
System.out.println( "初始堆开始" );
for ( int i = (array.length - 1 ) / 2 ; i >= 0 ; i--) {
if (inverse) {
heapAdjustS(array, i, array.length);
} else {
heapAdjustB(array, i, array.length);
}
}
System.out.println( "初始堆结束" );
for ( int i = array.length - 1 ; i > 0 ; i--) {
// 交换堆顶元素H[0]和堆中最后一个元素
int tmp = array[i];
array[i] = array[ 0 ];
array[ 0 ] = tmp;
// 每次交换堆顶元素和堆中最后一个元素之后,都要对堆进行调整
if (inverse) {
heapAdjustS(array, 0 , i);
} else {
heapAdjustB(array, 0 , i);
}
}
}
public static void main(String[] args) {
int [] array = { 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 };
heapSort(array, false );
for ( int i : array) {
System.out.print(i + " " );
}
}
}
|
运行结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
初始堆开始
待调整结点为:array[3] = 97
将与子孩子 array[7] = 49 进行比较
子孩子比其小,交换位置
没有子孩子了,调整结束
待调整结点为:array[2] = 65
将与子孩子 array[5] = 13 进行比较
子孩子比其小,交换位置
没有子孩子了,调整结束
待调整结点为:array[1] = 38
将与子孩子 array[3] = 49 进行比较
子孩子均比其大,调整结束
待调整结点为:array[0] = 49
将与子孩子 array[2] = 13 进行比较
子孩子比其小,交换位置
继续与新的子孩子进行比较
将与子孩子 array[6] = 27 进行比较
子孩子比其小,交换位置
没有子孩子了,调整结束
初始堆结束
待调整结点为:array[0] = 97
将与子孩子 array[2] = 27 进行比较
子孩子比其小,交换位置
继续与新的子孩子进行比较
将与子孩子 array[6] = 49 进行比较
子孩子比其小,交换位置
没有子孩子了,调整结束
待调整结点为:array[0] = 97
将与子孩子 array[1] = 38 进行比较
子孩子比其小,交换位置
继续与新的子孩子进行比较
将与子孩子 array[3] = 49 进行比较
子孩子比其小,交换位置
没有子孩子了,调整结束
待调整结点为:array[0] = 65
将与子孩子 array[1] = 49 进行比较
子孩子比其小,交换位置
继续与新的子孩子进行比较
将与子孩子 array[4] = 76 进行比较
子孩子均比其大,调整结束
待调整结点为:array[0] = 76
将与子孩子 array[2] = 49 进行比较
子孩子比其小,交换位置
没有子孩子了,调整结束
待调整结点为:array[0] = 97
将与子孩子 array[1] = 65 进行比较
子孩子比其小,交换位置
没有子孩子了,调整结束
待调整结点为:array[0] = 76
将与子孩子 array[1] = 97 进行比较
子孩子均比其大,调整结束
待调整结点为:array[0] = 97
97 76 65 49 49 38 27 13
|
PS:堆排序与直接插入排序的区别
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。