poj 2955 括号匹配 区间dp

时间:2023-03-09 09:33:00
poj 2955  括号匹配 区间dp
Brackets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6033   Accepted: 3220

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …,im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

Source

题意:给你一个串 问你有多少可匹配的括号  ‘(’   ')'   '['  ']'
题解:dp[i][j] 表示 区间i~j有多少可匹配的括号
状态转移方程:dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]) k(为分界点)
但是如果a[i]与a[j]匹配 还需要增加判断 dp[i][j]=max(dp[i][j],dp[i+1][j-1]+2)
来确保最优。
做了一些区间dp,要注意的几点
1.分界点的枚举
2.边界的处理
3.递推过程中的i,j
4.区间dp就是逆着状态递推(dp不都是这样吗 zz)
 /******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<cmath>
#define ll __int64
#define PI acos(-1.0)
#define mod 1000000007
char a[];
int dp[][];
using namespace std;
int main()
{
while(gets(a))
{
if(a[]=='e')
break;
int len=strlen(a);
memset(dp,,sizeof(dp));
/*for(int i=; i<len-; i++)
{
if(((a[i]=='(')&&(a[i+]==')'))||((a[i]=='[')&&(a[i+]==']')))//边界处理
dp[i][i+]=;
}*/此处删去仍然可以 ac 细细想一下 其实这个边界 已经在下面的if中处理掉了
for(int i=len-; i>=; i--)
{
for(int j=i+; j<=len-; j++)
{
for(int k=i; k<=j; k++)
dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+][j]);
if(((a[i]=='(')&&(a[j]==')'))||((a[i]=='[')&&(a[j]==']')))
dp[i][j]=max(dp[i][j],dp[i+][j-]+);
}
}
cout<<dp[][len-]<<endl;;
}
return ;
}