Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 589 Accepted Submission(s): 292
Problem Description
Sample Input
2
Sample Output
2
Hint
1. For N = 2, S(1) = S(2) = 1.
2. The input file consists of multiple test cases.
/*分析:题目要求s1+s2+s3+...+sn;//si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3
假设An=s1+s2+s3+...+sn;
对于n可以先划分第一个数为n,n-1,n-2,...,1,则容易得出An=A0+A1+A2+A3+...+A(n-1);
=>A(n+1)=A0+A1+A2+A3+...+An =>An=2^(n-1);
由于n非常大,所以这里要用到费马小定理:a^(p-1)%p == 1%p == 1;//p为素数
所以2^n%m == ( 2^(n%(m-1))*2^(n/(m-1)*(m-1)) )%m == (2^(n%(m-1)))%m * ((2^k)^(m-1))%m == (2^(n%(m-1)))%m;//k=n/(m-1)
*/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<iomanip>
#define INF 99999999
using namespace std; const int MAX=100000+10;
const int mod=1000000000+7;
char s[MAX]; __int64 MOD(char *a,int Mod){
__int64 sum=0;
for(int i=0;a[i] != '\0';++i){
sum=(sum*10+a[i]-'0')%Mod;
}
return sum;
} __int64 FastPow(__int64 a,__int64 k){
k=(k+mod)%mod;
__int64 sum=1;
while(k){
if(k&1)sum=sum*a%mod;
a=a*a%mod;
k>>=1;
}
return sum;
} int main(){
while(scanf("%s",s)!=EOF){
__int64 n=MOD(s,mod-1)-1;
printf("%I64d\n",FastPow(2,n));
}
return 0;
}