Sum
Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704
Mean:
给定一个大整数N,求1到N中每个数的因式分解个数的总和。
analyse:
N可达10^100000,只能用数学方法来做。
首先想到的是找规律。通过枚举小数据来找规律,发现其实answer=pow(2,n-1);
分析到这问题就简单了。由于n非常大,所以这里要用到费马小定理:a^n ≡ a^(n%(m-1)) * a^(m-1)≡ a^(n%(m-1)) (mod m) 来优化一下,不然直接用快速幂会爆。
Time complexity: O(n)
Source code:
/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-05-22-21.21
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define LL long long
#define ULL unsigned long long
using namespace std;
const int mod=1e9+;
const int MAXN=;
char s[MAXN];
long long quickPower(long long a,long long b,long long m)
{
long long ans=;
while(b)
{
if(b&) ans=(ans*a)%m,b--;
b/=,a=a*a%m;
}
return ans;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie();
while(~scanf("%s",s))
{
ULL n=;
for(int i=;s[i];++i)
n=(n*+s[i]-'')%(mod-);
printf("%d\n",(int)quickPower(,((n-)%(mod-))%mod,mod));
}
return ;
}
/* */