题目链接:
Sequence
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Holion August will eat every thing he has found.
Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.
fn=⎧⎩⎨⎪⎪1,ab,abfcn−1fn−2,n=1n=2otherwise
He gives you 5 numbers n,a,b,c,p,and he will eat fn foods.But there are only p foods,so you should tell him fn mod p.
Input
The first line has a number,T,means testcase.
Each testcase has 5 numbers,including n,a,b,c,p in a line.
1≤T≤10,1≤n≤10^18,1≤a,b,c≤10^9,p is a prime number,and p≤10^9+7.
Output
Output one number for each case,which is fn mod p.
Sample Input
1
5 3 3 3 233
Sample Output
190
题意:
问f(n)对p取模的结果;
思路:
(ab)p[n]= ab * ((ab)p[n-1])c * ((ab)p[n-2]);递推式子可以这样写;
合并后变为(ab)p[n]=(ab)(c*p[n-1]+p[n-2]+1);
可以得到p[n]=c*p[n-1]+p[n-2]+1;
这样的递推式可以用矩阵乘法得到第n项;这是矩阵乘法的一个应用,给matrix67大神的博客地址可以学习,点这里
构造矩阵乘法:
p[n] c 1 1 p[n-1]
p[n-1] = 1 0 0 * p[n-2]
1 0 0 1 1
然后这中间还有一个问题,就是取模的问题;ab*p[n]%mod=ab*p[n]%(mod-1)%mod;
这是根据费马小定理得到的;a(p-1)Ξ1%p;这里给出地址
ab*p[n]%mod=ab*p[n]/(mod-1)*(mod-1)+b*p[n]%(mod-1)%mod;
令x=b*p[n]/(mod-1)则ab*p[n]%mod=ax*(mod-1)+b*p[n]%(mod-1)%mod=ab*p[n]%(mod-1)%mod;
这就是取模的结果啦;
然后就是快速幂算答案啦;
还有要注意的就是a%p==0的情况;
AC代码:
/*5667 0MS 1584K 1835B G++ 2014300227*/
#include <bits/stdc++.h>
using namespace std;
const int N=1e4+;
typedef long long ll;
const int mod=1e9+;
ll n,a,b,c,p;
struct matrix
{
ll a[][];
};
matrix A;
void Iint(ll x)//矩阵初始化;
{
A.a[][]=x;
A.a[][]=;
A.a[][]=;
A.a[][]=;
A.a[][]=A.a[][]=;
A.a[][]=A.a[][]=;
A.a[][]=;
}
matrix mul(matrix x,matrix y)//矩阵相乘
{
matrix ans;
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
ans.a[i][j]=;
for(int k=;k<;k++)
{
ans.a[i][j]+=(x.a[i][k]*y.a[k][j])%(p-);
ans.a[i][j]%=(p-);
}
}
}
return ans;
}
ll fast_fun(matrix temp,ll num)//矩阵快速幂;
{
matrix s,base;
for(int i=;i<;i++)//s初始化为单位矩阵
{
for(int j=;j<;j++)
{
s.a[i][j]=;
base.a[i][j]=temp.a[i][j];
}
}
s.a[][]=s.a[][]=s.a[][]=;
while(num)
{
if(num&)
{
s=mul(s,base);
}
base=mul(base,base);
num=(num>>);
}
return (s.a[][]+s.a[][])%(p-);
}
ll fastpow(ll fx,ll fy)//快速幂求结果;
{
ll s=,base=fx;
while(fy)
{
if(fy&)
{
s*=base;
s%=p;
}
base*=base;
base%=p;
fy=(fy>>);
}
return s;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld%lld%lld%lld",&n,&a,&b,&c,&p);
Iint(c);
if(n==)printf("1\n");
else if(n==)printf("%lld\n",fastpow(a,b));
else
{
if(a%p==)printf("0\n");
else {
ll gg=fast_fun(A,n-)*b%(p-);
printf("%lld\n",fastpow(a,gg));
}
}
}
return ;
}