1、wav音频文件的格式
wav文件由文件头和采样数据2部分组成。
文件头又分为RIFF(Resource Interchange File Format)、WAVE文件标识段 和 声音数据格式说明段组成。
各段的起始地址分别由RIFF标识符、WAVE标识符、以及波形格式标识符(FMT)标定。
(1)文件头格式
注意:下面的地址是连续的
(2)数据格式
虽然上图给出的数据标识符起始地址刚好是文件头的末地址+1,但并不代表总是这样。
因此,我们在读取数据时最好是找到数据标识符,该标识符的4个字节刚好是'd'、‘a’、‘t’、‘a’。
2、C语言读取wav文件
首先对一些类型使用了重定义
typedef unsigned char uchar; typedef unsigned char uint8; typedef unsigned short uint16; typedef unsigned long uint32; typedef char sint8; typedef short sint16; typedef long sint32; typedef float fp32; typedef double fp64; typedef enum BOOLEAN { TRUE = 1, FALSE = 0 } boolean;
(1)wav结构体定义
//wave文件头 typedef struct WaveHeader { uint8 riff[4]; //资源交换文件标志 uint32 size; //从下个地址开始到文件结尾的字节数 uint8 wave_flag[4]; //wave文件标识 uint8 fmt[4]; //波形格式标识 uint32 fmt_len; //过滤字节(一般为00000010H) uint16 tag; //格式种类,值为1时,表示PCM线性编码 uint16 channels; //通道数,单声道为1,双声道为2 uint32 samp_freq; //采样频率 uint32 byte_rate; //数据传输率 (每秒字节=采样频率×每个样本字节数) uint16 block_align; //块对齐字节数 = channles * bit_samp / 8 uint16 bit_samp; //bits per sample (又称量化位数) } wave_header_t; typedef struct WaveStruct { FILE *fp; //file pointer wave_header_t header; //header uint8 data_flag[4]; //数据标识符 uint32 length; //采样数据总数 uint32 *pData; //data } wave_t; wave_t wave;
(2)读取文件头信息
/* * open *.wav file */ void WaveOpen(char *file, int raw, int mono_stereo) { uchar temp = 0; uint8 read_bytes = 0; char *channel_mappings[] = {NULL,"mono","stereo"}; uint32 total_time = 0; struct PlayTime //播放时间 { uint8 hour; uint8 minute; uint8 second; } play_time; if(NULL == (wave.fp=fopen(file, "rb"))) /* open file */ { printf("file %s open failure!\n", file); } /* read heade information */ if(4 != fread(wave.header.riff, sizeof(uint8), 4, wave.fp)) /* RIFF chunk */ { printf("read riff error!\n"); return; } if(1 != fread(&wave.header.size, sizeof(uint32), 1, wave.fp)) /* SIZE : from here to file end */ { printf("read size error!\n"); return; } if(4 != fread(wave.header.wave_flag, sizeof(uint8), 4, wave.fp)) /* wave file flag */ { printf("read wave_flag error!\n"); return; } if(4 != fread(wave.header.fmt, sizeof(uint8), 4, wave.fp)) /* fmt chunk */ { printf("read fmt error!\n"); return; } if(1 != fread(&wave.header.fmt_len, sizeof(uint32), 1, wave.fp)) /* fmt length */ { printf("read fmt_len error!\n"); return; } if(1 != fread(&wave.header.tag, sizeof(uint16), 1, wave.fp)) /* tag : PCM or not */ { printf("read tag error!\n"); return; } if(1 != fread(&wave.header.channels, sizeof(uint16), 1, wave.fp)) /* channels */ { printf("read channels error!\n"); return; } if(1 != fread(&wave.header.samp_freq, sizeof(uint32), 1, wave.fp)) /* samp_freq */ { printf("read samp_freq error!\n"); return; } if(1 != fread(&wave.header.byte_rate, sizeof(uint32), 1, wave.fp)) /* byte_rate : decode how many bytes per second */ { /* byte_rate = samp_freq * bit_samp */ printf("read byte_rate error!\n"); return; } if(1 != fread(&wave.header.block_align, sizeof(uint16), 1, wave.fp)) /* quantize bytes for per samp point */ { printf("read byte_samp error!\n"); return; } if(1 != fread(&wave.header.bit_samp, sizeof(uint16), 1, wave.fp)) /* quantize bits for per samp point */ { /* bit_samp = byte_samp * 8 */ printf("read bit_samp error!\n"); return; } /* jump to "data" for reading data */ do { fread(&temp, sizeof(uchar), 1, wave.fp); } while('d' != temp); wave.data_flag[0] = temp; if(3 != fread(&wave.data_flag[1], sizeof(uint8), 3, wave.fp)) /* data chunk */ { printf("read header data error!\n"); return; } if(1 != fread(&wave.length, sizeof(uint32), 1, wave.fp)) /* data length */ { printf("read length error!\n"); } /* jduge data chunk flag */ if(!StrCmp(wave.data_flag, "data", 4)) { printf("error : cannot read data!\n"); return; } total_time = wave.length / wave.header.byte_rate; play_time.hour = (uint8)(total_time / 3600); play_time.minute = (uint8)((total_time / 60) % 60); play_time.second = (uint8)(total_time % 60); /* printf file header information */ printf("%s %ldHz %dbit, DataLen: %ld, Rate: %ld, Length: %2ld:%2ld:%2ld\n", channel_mappings[wave.header.channels], //声道 wave.header.samp_freq, //采样频率 wave.header.bit_samp, //每个采样点的量化位数 wave.length, wave.header.byte_rate, play_time.hour,play_time.minute,play_time.second); //fclose(wave.fp); /* close wave file */ }
按结构体一点点的读出文件头的信息,请注意
/* jump to "data" for reading data */
的那一段,“先识别data标识符,再接着往下读取”。
(3)读数据
在读完数据长度之后就全是数据了,直接使用fread按uint32格式读取数据即可,我这里每次读取1152个数据(即一帧)。
/* * get wave data */ uint32* GetWave(void) { static uint32 buffer[1152] = {0}; uint16 n = 1152; uint16 p = 0; p = fread(buffer, sizeof(uint32), n, wave.fp); if(!p) { return 0; } else { for(; p<n; p++) { buffer[p] = 0; } return buffer; } }
上面程序中注意几点,
(1)不要定义大容量的局部变量,因为局部变量存放在堆栈中。如果一定要定义,要定义成static类型。
(2)不要返回局部变量的的地址,因为在堆栈中的地址值是不确定的。
(3)对于for(; p<n; p++)指当读出的数据不满一帧的时候,在后面补0到一帧,一般这样方便后期处理
上面的程序返回局部数组的指针,前提是 已经将数据存放在静态数据存储区。
但不管怎样,返回局部变量的地址总是不好的。