Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is
Then we can write,
For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).
Output
For each case, print the case number and the result.
Sample Input
4
3
10
100
1000
Sample Output
Case 1: 1
Case 2: 5
Case 3: 83
Case 4: 947
首先给出题目中的公式的推导过程:
n是一个整数,f(n)代表他的因子的和。假设n=12,对他进行素因子分解可得n=2^2*3。12的因子有1,2,3,4,6,12,和为28。根据题目中的公式:f(n)=(2^3-1)/(2-1)*(3^2-1)/(3-1)=7*4=28。为什么会是这样呢?将因子再进行素因子分解可以发现:1=2^0*3^0 , 2=2^1*3^0 , 3=2^0*3^1 , 4=2^2*3^0 , 6=2^1 *3^1 , 12=2^2*3^1。所以1+2+3+4+6+12=2^0*3^0+2^1*3^0+2^0*3^1+2^2*3^0+2^1 *3^1+2^2*3^1=(2^0+2^1+2^2)*(3^0+3^1)。利用等比数列前n项和公式:(2^3-1)/(2-1)*(3^2-1)/(3-1)=7*4=28。推导完毕。
事实上,这称之为积性函数。
解题思路:
题意:
求 1—n 中,有多少个数的因子和是偶数。
题解:
打表找规律。
素因子分解打表计算前n项和判断奇数偶数可以发现如下规律:
只要是2^x,a^2,2*a^2...只有这种数的因子和是奇数。所以,我们直接去重即可。
但是这些直接去重我们会发现减去的这些值有重复的,所以我们要判断下。
i (代表x||a): 0 1 2 3 4 5 6 7 8 9 ......
2^x: 1 2 4 8 16 32 64 128 ......
a^2: 0 1 4 9 16 25 36 49 64 ......
2*a^2: 0 2 8 18 32 50 72 ......
我们可以发现2^x里面有的数,a^2和2*a^2里面都有。
加下划线的字一一对应,加粗的字一一对应。
①2^x和a^2, 当x为偶数时二者出现重复。
②2^x和2*a^2,当x为奇数时,二者出现重复。
所以不需要考虑2^x的个数,直接用n减去a^2和2*a^2的个数就是我们要的结果。
易知:a^2的个数=sqrt(n),2*a^2的个数=sqrt(n/2)。
那么为什么会是这样呢?给出推导过程:
n=p1^e1*p2^e2...,则f(n)=(p1^(e1+1)-1)/(p1-1))*(p2^(e2+1)-1)/(p2-1))....
且(p1^(e1+1)-1)/(p1-1))=p1^0+p1^1......+p1^e1;
要使得f(n)为奇数,则(p1^(e1+1)-1)/(p1-1)到(pn^(en+1)-1)/(pn-1)都要为奇数;
因为奇数*奇数=奇数,奇数*偶数=偶数;
1)当p=2时,2^(e+1)-1,一定为奇数;
2)当p!=2时,则p为奇数(因为p是素因子),则当e为偶数时(p^(e+1)-1)/(p-1)为奇数。
经转化我们可以发现,2^6=8^2,2^11=2*32^2。也就是平方数和2倍的平方数。
则需要统计1到n中的平方数个数和2倍的平方数的个数,得到的为1到n中f(n)为奇数的个数。
#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long ll;
int main()
{
int t,cas=;
cin>>t;
while(t--)
{
ll n,a,b;
cin>>n;
a=sqrt(n);
b=sqrt(n/);
printf("Case %d: %lld\n",cas++,n-a-b);
}
return ;
}