LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数

时间:2021-05-01 18:42:17

题目链接:https://vjudge.net/problem/LightOJ-1336

1336 - Sigma Function
Time Limit: 2 second(s) Memory Limit: 32 MB

Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is

Then we can write,

For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).

Output

For each case, print the case number and the result.

Sample Input

Output for Sample Input

4

3

10

100

1000

Case 1: 1

Case 2: 5

Case 3: 83

Case 4: 947

题意:

求1到n(n<=1e12)内,有多少个数的约数和为偶数。

题解:

1.将一个数n进行质因子分解,得到 pi 和 ai,其中pi为第i个质因子,ai为第i个质因子的个数,

那么这个数的约数和:f(n) = (1+2^1+2^2……2^a1)*(1+3^1+3^2……3^a2)……*(1+pi^1+pi^2……pi^ai)*……

解释:从每一个括号中挑选一个数出来相乘,就得到一个约数。在根据组合数的思想,总的就得到所有约数的和。

2.可知:偶数可以是偶数乘以偶数,也可以是奇数乘以偶数;而奇数只能是奇数乘以奇数。所以,统计奇数要比统计偶数方便,所以总体思想就是用总的个数减去约数和为奇数的个数。

3.那么,要使 f(n) 为奇数,必须满足每个括号中的数之和为奇数。可知,当pi = 2时,括号里的数必定为奇数。因为2的正数次方均为偶数,再加上一个1,就为奇数。所以:

3.1 当n不含有2这个质因子时:每个括号内ai必须为偶数,当ai为偶数就说明了括号内有 ai+1个奇数相加,和为奇数。因此,当每个质因子的个数ai均为偶数时,n可以表示为 n = x^2,即表明当n为一个平方数时,f(n)为奇数。

3.2 当n含有2这个质因子时:可知对于2来说,无论它的个数为多少,对应括号里的和都为奇数,那么只要同时满足其他括号里的数之和都为奇数,即满足3.1的要求,那么f(n)为奇数。此时 n = 2*x^2。(注:当n = 2*2*2*x^2时, n = 2*(2*x)^2,即同样满足 2*x^2的通项公式)

3.3 综上,当 n = x^2 或者 n = 2*x^2时, f(n)为奇数。所以在n之内,有sqrt(n) + sqrt(n/2) 个数的约数和为奇数。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 5e5+; int main()
{
int T, kase = ;
scanf("%d", &T);
while(T--)
{
LL n;
scanf("%lld",&n);
LL ans = n - (LL)sqrt(n) - (LL)sqrt(n/);
printf("Case %d: %lld\n", ++kase,ans);
}
}