看图写代码
阅读<<Audio/Video Connectivity Solutions for Virtex-II Pro and Virtex-4 FPGAs >>
1.SDI Block Diagram and SD-SDI Section Chapters
2.XYZ Word Format for the 4:4:4:4 TRS Symbol
端口定义:
module trs_detect (
// inputs
clk, // clock input
ce, // clock enable
rst, // async reset input
vid_in, // video input // outputs
vid_out, // delayed and clipped video output
rx_trs, // asserted during first word of TRS symbol
rx_eav, // asserted during first word of an EAV symbol
rx_sav, // asserted during first word of an SAV symbol
rx_f, // field bit from last received TRS symbol
rx_v, // vertical blanking interval bit from last TRS symbol
rx_h, // horizontal blanking interval bit from last TRS symbol
rx_xyz, // asserted during TRS XYZ word
rx_xyz_err, // XYZ error flag for non-4444 standards
rx_xyz_err_4444,// XYZ error flag for 4444 standards
rx_anc, // asserted during first word of ADF
rx_edh // asserted during first word of ADF if it is an EDH packet
);
以下代码的作用是对输入数据(vid_in)进行解码:
1.寄存器锁存vid_in数据:
//
// in_reg
//
// The input register loads the value on the vid_in port.
//
always @ (posedge clk or posedge rst)
if (rst)
in_reg <= ;
else if (ce) //时钟使能
in_reg <= vid_in; //接收数据
2.检测是否有输入的数据全为1即3FF,或者全为0即000:
all_ones_in 和 all_zeros_in采用的是组合逻辑
//
// all ones and all zeros detectors
//
// This logic determines if the input video word is all ones or all zeros. To
// provide compatibility with 8-bit video equipment, the LS two bits are
// ignored.
//
assign all_ones_in = &in_reg[:]; //检测输入的图像数据是否全为0或者1
assign all_zeros_in = ~|in_reg[:];
3.将接收到的视频数据,和生成的all_ones_in , all_zeros_in信号存入寄存器 pipe1
//
// pipe1
//
// The pipe1 register holds the inut video and the outputs of the all zeros
// and all ones detectors.
//
always @ (posedge clk or posedge rst) //锁存接收到的数据
if (rst)
begin
pipe1_vid <= ;
pipe1_ones <= 'b0;
pipe1_zeros <= 'b0;
end
else if (ce)
begin
pipe1_vid <= in_reg;
pipe1_ones <= all_ones_in;
pipe1_zeros <= all_zeros_in;
end
4.将pipe1里面的数据存入pipe2寄存器,这就相当于把pipe1延时一个时钟周期:
//
// pipe2_reg
//
// The pipe2 register delays the contents of the pipe1 register for one more
// clock cycle.
//
always @ (posedge clk or posedge rst) //将pipe1延时一个时钟周期
if (rst)
begin
pipe2_vid <= ;
pipe2_ones <= 'b0;
pipe2_zeros <= 'b0;
end
else if (ce)
begin
pipe2_vid <= pipe1_vid;
pipe2_ones <= pipe1_ones;
pipe2_zeros <= pipe1_zeros;
end
5.现在我们可以认为,pipe2寄存器里面传入的是最先传入的第一个视频数据,pipe1里面传入的是紧跟着的第二个视频数据,all_zeros_in显示的是当前传入的视频数据的状态。此段代码的功能是对三个连续的视频数据进行检测,是否有3ff,000,000 和 000,000,3ff这样连续的三个数据。
//
// TRS & ANC detector
//
// The trs signal when the sequence 3ff, 000, 000 is stored in the pipe2, pipe1,
// and in_reg registers, respectively. The anc signal is asserted when these
// same registers hold the sequence 000, 3ff, 3ff.
//
assign trs = all_zeros_in & pipe1_zeros & pipe2_ones; //原来如此,3ff,000,000检测
assign anc = all_ones_in & pipe1_ones & pipe2_zeros; //000,3ff,3ff 检测
assign eav = trs & vid_in[]; //当检测到了trs之后,下一个视频数据就是xyz的信息,其中的第6位为H H =1
assign sav = trs & ~vid_in[]; // H = 0
当检测到3ff,000,000 时,trs变为高电平,当检测到000,000,3ff时,anc变为高电平,当检测到TRS时候,我们再解码EAV 和 SAV。
参考BT.656的标准:
我们可以知道,SAV 和 EAV 是由TRS symbol 中的第6位H的值来确定的,因此有了:eav 和 sav 信号的逻辑产生。
6.产生 f, v, h信号
//
// f, v, and h flag generation
//
assign f = trs ? vid_in[] : out_reg_f;
assign v = trs ? vid_in[] : out_reg_v;
assign h = trs ? vid_in[] : out_reg_h;
当检测到trs信号时,f,v,h的信号分别是当前传入视频数据的第8,7,6位,当没有检测到trs信号时,返回的是输出寄存器里面的值,即上一次检测到trs的时候,f,v,h的状态
7.关于XYZ信号的检测
首先:trs将值传递给out_reg_trs需要一个时钟周期。
//
// output reg
//
// The output register holds the the output video data and various flags.
//
always @ (posedge clk or posedge rst)
if (rst)
begin
out_reg_vid <= ;
out_reg_trs <= 'b0;
out_reg_eav <= 'b0;
out_reg_sav <= 'b0;
out_reg_anc <= 'b0;
out_reg_edh <= 'b0;
out_reg_xyz <= 'b0;
out_reg_xyz_err <= 'b0;
out_reg_xyz_err_4444 <= 'b0;
out_reg_f <= ;
out_reg_v <= ;
out_reg_h <= ;
end
else if (ce)
begin
out_reg_vid <= pipe2_vid;
out_reg_trs <= trs;
out_reg_eav <= eav;
out_reg_sav <= sav;
out_reg_anc <= anc;
out_reg_edh <= anc & edh_in;
out_reg_xyz <= xyz;
out_reg_xyz_err <= xyz_err;
out_reg_xyz_err_4444 <= xyz_err_4444;
out_reg_f <= f;
out_reg_v <= v;
out_reg_h <= h;
end
然后:out_reg_trs传入trs_delay[0]信号需要一个时钟周期
//
// trs_delay register
//
// Used to assert the xyz signal when pipe2 contains the XYZ word of a TRS
// symbol.
always @ (posedge clk or posedge rst)
if (rst)
trs_delay <= 'b00;
else if (ce)
trs_delay <= {trs_delay[], out_reg_trs};
将out_reg_trs的值传递到trs_delay[1]又需要一个时钟周期
经过三个时钟周期,XYZ的值已经存储在了pipe2寄存器上面,因此才有了如下代码:对xyz中的数据进行校验。
//
// XYZ and XYZ error logic
//
// The xyz signal is asserted when the pipe2 register holds the XYZ word of a
// TRS symbol. The xyz_err signal is asserted if an error is detected in the
// format of the XYZ word stored in pipe2. This signal is not valid for the
// 4444 component digital video formats. The xyz_err_4444 signal is asserted
// for XYZ word format errors.
//
assign xyz = trs_delay[]; assign xyz_err =
xyz &
((pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[]) | // P3 = V ^ H
(pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[]) | // P2 = F ^ H
(pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[]) | // P1 = F ^ V
(pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[]) | // P0 = F ^ V ^ H
~pipe2_vid[]); assign xyz_err_4444 =
xyz &
((pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[]) | // P4 = F ^ V ^ H
(pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[]) | // P3 = F ^ V ^ S
(pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[]) | // P2 = V ^ H ^ S
(pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[] ^ pipe2_vid[]) | // P1 = F ^ H ^ S
~pipe2_vid[]);