PAT A1145 Hashing - Average Search Time (25 分)——hash 散列的平方探查法

时间:2023-02-04 20:24:32

The task of this problem is simple: insert a sequence of distinct positive integers into a hash table first. Then try to find another sequence of integer keys from the table and output the average search time (the number of comparisons made to find whether or not the key is in the table). The hash function is defined to be H(key)=key%TSize where TSize is the maximum size of the hash table. Quadratic probing (with positive increments only) is used to solve the collisions.

Note that the table size is better to be prime. If the maximum size given by the user is not prime, you must re-define the table size to be the smallest prime number which is larger than the size given by the user.

Input Specification:

Each input file contains one test case. For each case, the first line contains 3 positive numbers: MSize, N, and M, which are the user-defined table size, the number of input numbers, and the number of keys to be found, respectively. All the three numbers are no more than 10​4​​. Then N distinct positive integers are given in the next line, followed by M positive integer keys in the next line. All the numbers in a line are separated by a space and are no more than 10​5​​.

Output Specification:

For each test case, in case it is impossible to insert some number, print in a line X cannot be inserted. where X is the input number. Finally print in a line the average search time for all the M keys, accurate up to 1 decimal place.

Sample Input:

4 5 4
10 6 4 15 11
11 4 15 2

Sample Output:

15 cannot be inserted.
2.8
#include <stdio.h>
#include <algorithm>
#include <set>
#include <vector>
#include <string>
#include <iostream>
#include <queue>
using namespace std;
const int maxn=;
int a[maxn];
int msize,n,m,k;
vector<int> v;
bool isprime(int i){
if(i== || i==)return false;
if(i== || i==)return true;
for(int j=;j*j<=i;j++){
if(i%j==)return false;
}
return true;
}
int main(){
fill(a,a+maxn,-);
scanf("%d %d %d",&msize,&n,&m);
while(!isprime(msize)){
msize++;
}
for(int i=;i<n;i++){
int tmp;
scanf("%d",&tmp);
int j;
for(j=;j<msize;j++){
if(a[(tmp+j*j)%msize]==-){
a[(tmp+j*j)%msize]=tmp;
break;
}
}
if(j==msize){
printf("%d cannot be inserted.\n",tmp);
}
}
float cnt=;
for(int i=;i<m;i++){
int tmp;
scanf("%d",&tmp);
int j;
cnt++;
for(j=;j<msize;j++){
if(a[(tmp+j*j)%msize]==tmp || a[(tmp+j*j)%msize]==-){
break;
}
cnt++;
}
}
printf("%.1f",cnt/m);
}

注意点:hash 散列的平方探查法,题目只要求加法。正常是加减都有,规则为(key+k*k)%tsize,当k在0-tsize内都不满足条件时说明该元素无法插入。减法出现小于0时,((key-k*k)%tsize+tsize)%tsize,即不断加tsize的第一个非负数。

第二点,题目的计算平均查询次数,总感觉有问题,当这个数插不进去时要多加一次,不知道为什么。