LeetCode(304)Range Sum Query 2D - Immutable

时间:2025-04-15 15:07:13

题目

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

LeetCode(304)Range Sum Query 2D - Immutable

Range Sum Query 2D

The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [

[3, 0, 1, 4, 2],

[5, 6, 3, 2, 1],

[1, 2, 0, 1, 5],

[4, 1, 0, 1, 7],

[1, 0, 3, 0, 5]

]

sumRegion(2, 1, 4, 3) -> 8

sumRegion(1, 1, 2, 2) -> 11

sumRegion(1, 2, 2, 4) -> 12

Note:

You may assume that the matrix does not change.

There are many calls to sumRegion function.

You may assume that row1 ≤ row2 and col1 ≤ col2.

分析

思想与上一题相同。

注意下标处理方式。

AC代码

class NumMatrix {
public:
NumMatrix(vector<vector<int>> &matrix) {
if (matrix.empty())
return; //求得二维矩阵的行列
int m = matrix.size(), n = matrix[0].size();
sums = vector<vector<int>>(m+1, vector<int>(n+1, 0));
sums[0][0] = matrix[0][0];
for (int j = 1; j <= n; ++j)
{
sums[0][j] = 0;
} for (int i = 1; i <= m; ++i)
{
sums[i][0] = 0;
} //
for (int i = 1; i <= m; ++i)
{
for (int j = 1; j <= n; ++j)
{
sums[i][j] = sums[i][j - 1] + sums[i - 1][j] - sums[i - 1][j - 1] + matrix[i-1][j-1];
}//for
}//for
} int sumRegion(int row1, int col1, int row2, int col2) {
//求得二维矩阵的行列
int m = sums.size(), n = sums[0].size();
if (row1 < 0 || row1 >= m || col1 < 0 || col1 >= n || row2<0 || row2 >= m ||
col2<0 || col2 >= n || row1 >row2 || col1 > col2)
{
return 0;
} return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
} private:
vector<vector<int>> sums;
};

GitHub测试程序源码