[LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

时间:2025-04-15 15:37:02

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

[LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12 

Note:

  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

303. Range Sum Query - Immutable 的变形,这题是2D数组,给左上角和右下角的点,这两点的行和列组成了一个矩形,求这个矩形里所有数字的和。

解法:DP, 建立一个二维数组dp,其中dp[i][j]表示累计区间(0, 0)到(i, j)这个矩形区间所有数字的和,求(r1, c1)到(r2, c2)的矩形区间和时,只需dp[r2][c2] - dp[r2][c1 - 1] - dp[r1 - 1][c2] + dp[r1 - 1][c1 - 1]即可。

Java:

private int[][] dp;

public NumMatrix(int[][] matrix) {
if( matrix == null
|| matrix.length == 0
|| matrix[0].length == 0 ){
return;
} int m = matrix.length;
int n = matrix[0].length; dp = new int[m + 1][n + 1];
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] -dp[i - 1][j - 1] + matrix[i - 1][j - 1] ;
}
}
} public int sumRegion(int row1, int col1, int row2, int col2) {
int iMin = Math.min(row1, row2);
int iMax = Math.max(row1, row2); int jMin = Math.min(col1, col2);
int jMax = Math.max(col1, col2); return dp[iMax + 1][jMax + 1] - dp[iMax + 1][jMin] - dp[iMin][jMax + 1] + dp[iMin][jMin];
}

Python:

class NumMatrix(object):
def __init__(self, matrix):
if matrix is None or not matrix:
return
n, m = len(matrix), len(matrix[0])
self.sums = [ [0 for j in xrange(m+1)] for i in xrange(n+1) ]
for i in xrange(1, n+1):
for j in xrange(1, m+1):
self.sums[i][j] = matrix[i-1][j-1] + self.sums[i][j-1] + self.sums[i-1][j] - self.sums[i-1][j-1] def sumRegion(self, row1, col1, row2, col2):
row1, col1, row2, col2 = row1+1, col1+1, row2+1, col2+1
return self.sums[row2][col2] - self.sums[row2][col1-1] - self.sums[row1-1][col2] + self.sums[row1-1][col1-1]

Python:  

# Time:  ctor:   O(m * n),
# lookup: O(1)
# Space: O(m * n) class NumMatrix(object):
def __init__(self, matrix):
"""
initialize your data structure here.
:type matrix: List[List[int]]
"""
if not matrix:
return m, n = len(matrix), len(matrix[0])
self.__sums = [[0 for _ in xrange(n+1)] for _ in xrange(m+1)]
for i in xrange(1, m+1):
for j in xrange(1, n+1):
self.__sums[i][j] = self.__sums[i][j-1] + matrix[i-1][j-1]
for j in xrange(1, n+1):
for i in xrange(1, m+1):
self.__sums[i][j] += self.__sums[i-1][j] def sumRegion(self, row1, col1, row2, col2):
"""
sum of elements matrix[(row1,col1)..(row2,col2)], inclusive.
:type row1: int
:type col1: int
:type row2: int
:type col2: int
:rtype: int
"""
return self.__sums[row2+1][col2+1] - self.__sums[row2+1][col1] - \
self.__sums[row1][col2+1] + self.__sums[row1][col1] 

C++:

class NumMatrix {
private:
int row, col;
vector<vector<int>> sums;
public:
NumMatrix(vector<vector<int>> &matrix) {
row = matrix.size();
col = row>0 ? matrix[0].size() : 0;
sums = vector<vector<int>>(row+1, vector<int>(col+1, 0));
for(int i=1; i<=row; i++) {
for(int j=1; j<=col; j++) {
sums[i][j] = matrix[i-1][j-1] +
sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] ;
}
}
} int sumRegion(int row1, int col1, int row2, int col2) {
return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
}
};

  

类似题目:

[LeetCode] 303. Range Sum Query - Immutable 区域和检索 - 不可变

All LeetCode Questions List 题目汇总