[leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变

时间:2025-04-15 15:36:50

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

[leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

题目

给定元素不变的矩阵,求各种子矩阵和。

思路

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, , 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, , 5]
] sumRegion(2, 1, 4, 3) -> 8
(2,1) 为黄色range左上角的坐标, 所在坐标对应的点为2
(4,3) 为黄色range右下角的坐标, 所在坐标对应的点为0
黄色range中 2 + 0 + 0 + 1 + 0 + 1 + 0 + 3 + 0 = 8 比如, input matrix为
     2    0    -3    4
6 3 2 -1
5 4 7 3
2 -6 8 1

多加一行一列方便写code,变成dp matrix为

 0    0    0     0    0
2 0 -3 4
6 3 2 -1
5 4 7 3
2 -6 8 1

开始fill dp matrix

dp[i][j]表示sum of rectangle from (0,0) to matrix (i-1, j-1)

 0    0    0     0    0
2 2 -1 3 //-> first row: easy to fill(累加)
 0    0    0     0    0
2 -1 3 0 15
// -> first col: easy to fill(累加)
 0    0    0     0    0
0 2 2 -1 3
0 8 X -> dp[i][j] = dp[i-1][j] // 正上方 2
0 13 + dp[i][j-1] // 正左方 8
0 15 + matrix [i-1][j-1] // input matrix 该位置值
- dp[i-1][j-1] // 左上角 2 ,重复加了两次需要减去一次

代码

 class NumMatrix {
private int[][] dp; /* 1.build and fill dp matrix in O(m*n) time */
public NumMatrix(int[][] matrix) {
int row = 0;
int col = 0;
if (matrix.length != 0) {
row = matrix.length;
col = matrix[0].length;
}
dp = new int[row + 1][col + 1];
for (int i = 1; i < dp.length; i++) {
for (int j = 1; j < dp[0].length; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + matrix[i - 1][j - 1] - dp[i - 1][j - 1];
}
} } /*2. query in O(1) time */
public int sumRegion(int row1, int col1, int row2, int col2) {
/* coz dp matrix has size 1 greater one more than original matrix*/
row1++;
col1++;
row2++;
col2++;
return dp[row2][col2] - dp[row1 - 1][col2] - dp[row2][col1 - 1] + dp[row1 - 1][col1 - 1];
}
}

代码

 class NumMatrix {
private int[][] dp; /* 1.build and fill dp matrix in O(m*n) time */
public NumMatrix(int[][] matrix) {
int row = 0;
int col = 0;
if (matrix.length != 0) {
row = matrix.length;
col = matrix[0].length;
}
dp = new int[row + 1][col + 1];
for (int i = 1; i < dp.length; i++) {
for (int j = 1; j < dp[0].length; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + matrix[i - 1][j - 1] - dp[i - 1][j - 1];
}
} } /*2. query in O(1) time */
public int sumRegion(int row1, int col1, int row2, int col2) {
/* coz dp matrix has size 1 greater one more than original matrix*/
row1++;
col1++;
row2++;
col2++;
return dp[row2][col2] - dp[row1 - 1][col2] - dp[row2][col1 - 1] + dp[row1 - 1][col1 - 1];
}
}