
P3381 【模板】最小费用最大流
题目描述
如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。
输入输出格式
输入格式:
第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。
接下来M行每行包含四个正整数ui、vi、wi、fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi。
输出格式:
一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用。
输入输出样例
输入样例#1:
4 5 4 3
4 2 30 2
4 3 20 3
2 3 20 1
2 1 30 9
1 3 40 5
输出样例#1:
50 280
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=1000,M<=1000
对于100%的数据:N<=5000,M<=50000
样例说明:
如图,最优方案如下:
第一条流为4-->3,流量为20,费用为3*20=60。
第二条流为4-->2-->3,流量为20,费用为(2+1)*20=60。
第三条流为4-->2-->1-->3,流量为10,费用为(2+9+5)*10=160。
故最大流量为50,在此状况下最小费用为60+60+160=280。
故输出50 280。
90分的MCMF(dijkstra被卡常数了)
#include<cstdio>
#include<cstring>
#include<queue>
#define pir pair<int,int>
#define inf 0x33333333
using namespace std;
const int N=1e4+;
const int M=1e5+;
struct node{
int v,next,cap,cost;
node(int v=,int next=,int cap=,int cost=):v(v),next(next),cap(cap),cost(cost){}
}e[M<<];int tot=;
int n,m,S,T,head[N],pv[N],pe[N],dis[N],h[N];
bool vis[N];
void add(int x,int y,int cap,int cost){
e[++tot]=node(y,head[x],cap,cost);
head[x]=tot;
}
pir MCMF(){
int flow=,cost=;
while(){
memset(dis,0x33,sizeof dis);
priority_queue<pir,vector<pir>,greater<pir> >q;
q.push(make_pair(dis[S]=,S));
while(!q.empty()){
pir t=q.top();q.pop();
int x=t.second;
if(t.first!=dis[x]) continue;
if(x==T) break;
for(int i=head[x];i;i=e[i].next){
int v=e[i].v,newcost=e[i].cost+h[x]-h[v];
if(e[i].cap>&&dis[v]>dis[x]+newcost){
dis[v]=dis[x]+newcost;
q.push(make_pair(dis[v],v));
pv[v]=x;pe[v]=i;
}
}
}
if(dis[T]==inf) break;
for(int i=;i<=n;i++) h[i]=min(h[i]+dis[i],inf);
int newflow=inf;
for(int i=T;i!=S;i=pv[i]){
newflow=min(newflow,e[pe[i]].cap);
}
flow+=newflow;
cost+=newflow*h[T];
for(int i=T;i!=S;i=pv[i]){
e[pe[i]].cap-=newflow;
e[pe[i]^].cap+=newflow;
}
}
return make_pair(flow,cost);
}
int main(){
scanf("%d%d%d%d",&n,&m,&S,&T);
for(int i=,x,y,z,w;i<=m;i++) scanf("%d%d%d%d",&x,&y,&z,&w),add(x,y,z,w),add(y,x,,-w);
pir ans=MCMF();
printf("%d %d",ans.first,ans.second);
return ;
}
100分(改成spfa就过了)
/*
以费用作为权值,求出最小费用链,然后在这条链上求得一个最小流量,直到找不到费用链。求最小费用链也就相当于求src->des的最短路径。
使用spfa+EK算法。得到MCMF算法
*/ #include<cstdio>
#include<cstring>
#include<iostream>
#define inf 0x7fffffff
using namespace std;
const int N=1e4+;
const int M=1e5+;
struct node{
int v,next,cap,cost;
}e[M*];int tot=;
int n,m,S,T,head[N],dis[N],flow[N],pree[N],q[M*];
int Flow,Cost;
bool vis[N];
void add(int x,int y,int a,int b){
e[++tot].v=y;e[tot].cap=a;e[tot].cost=b;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=;e[tot].cost=-b;e[tot].next=head[y];head[y]=tot;
}
bool spfa(){
for(int i=;i<=n;i++) vis[i]=,dis[i]=inf;
int h=,t=;dis[S]=;q[t]=S;flow[S]=inf;pree[S]=;
while(h!=t){
int x=q[++h];vis[x]=;
for(int i=head[x];i;i=e[i].next){
int v=e[i].v;
if(e[i].cap&&dis[v]>dis[x]+e[i].cost){
dis[v]=dis[x]+e[i].cost;
pree[v]=i;
flow[v]=min(flow[x],e[i].cap);
if(!vis[v]){
vis[v]=;
q[++t]=v;
}
}
}
}
return dis[T]<inf;
}
void agument(){
for(int i=T;i!=S;i=e[pree[i]^].v){
e[pree[i]].cap-=flow[T];
e[pree[i]^].cap+=flow[T];
}
Flow+=flow[T];
Cost+=flow[T]*dis[T];
}
void MCMF(){
while(spfa()) agument();
}
int main(){
scanf("%d%d%d%d",&n,&m,&S,&T);
for(int i=,x,y,z,w;i<=m;i++) scanf("%d%d%d%d",&x,&y,&z,&w),add(x,y,z,w);
MCMF();
printf("%d %d\n",Flow,Cost);
return ;
}