就是一个求最小割.
sol:
数据比较大,n有20000,内部相连的边有20w,这么算算就要存八九十万的边,空间显然降不下来...然而打了dinic并不觉得快很多...最快跑到3800+ms
然后跪一大爷2000ms出头,他只开了50w的边这是怎么做到的qwq...然后并没有什么显著不同啊他封在一个class里(我根本不知道这玩意儿只知道跟struct差不多)...难道是读入优化打丑了...
附上他的代码地址:http://acm.hust.edu.cn/vjudge/problem/viewSource.action?id=4433085
Code:
/*==========================================================================
# Last modified: 2016-03-07 19:49
# Filename: poj3469.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector> #define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1] #define maxn 20015
#define maxm 1000500
#define pi 3.1415926535898
#define _e 2.718281828459
#define INF 1070000000
using namespace std;
typedef long long ll;
typedef unsigned long long ull; template<class T> inline
void read(T& num) {
bool start=false,neg=false;
char c;
num=0;
while((c=getchar())!=EOF) {
if(c=='-') start=neg=true;
else if(c>='0' && c<='9') {
start=true;
num=num*10+c-'0';
} else if(start) break;
}
if(neg) num=-num;
}
/*==================split line==================*/
int S,T,n,m;
int sume=1;
struct Edge{
int from,to,cap;
}e[maxm];
int first[maxn],d[maxn],next[maxm],cur[maxn];
bool vis[maxn];
queue<int> q;
void addedge(int x,int y,int cap){
sume++; e[sume].from=x; e[sume].to=y; e[sume].cap=cap;
next[sume]=first[x]; first[x]=sume;
sume++; e[sume].from=y; e[sume].to=x; e[sume].cap=0;
next[sume]=first[y]; first[y]=sume;
}
int bfs(){
for(int i=S;i<=T;i++) vis[i]=false;
q.push(0); d[0]=0; vis[0]=true;
while (!q.empty()){
int now=q.front(); q.pop();
for (int i=first[now];i;i=next[i])
if (!vis[e[i].to] && e[i].cap){
d[e[i].to]=d[now]+1;
vis[e[i].to]=true;
q.push(e[i].to);
}
}
return vis[T];
}
int dfs(int now,int a){
if (now==T || !a) return a;
int f,flow=0;
for (int & i=cur[now];i;i=next[i])
if (d[now]+1==d[e[i].to] && (f=dfs(e[i].to,min(a,e[i].cap)))>0){
flow+=f; a-=f; e[i].cap-=f; e[i^1].cap+=f;
if (!a) break;
}
return flow; }
int dinic(){
int flow=0;
while (bfs()){
FORP(i,0,n) cur[i]=first[i];
flow+=dfs(S,INF);
}
return flow;
}
int main(){
read(n); read(m);
FORP(i,1,n) {
int x;
read(x); addedge(0,i,x);
read(x); addedge(i,n+1,x);
}
FORP(i,1,m){
int x,y,z; read(x); read(y); read(z);
addedge(x,y,z); addedge(y,x,z);
}
S=0,T=n+1;
printf("%d",dinic());
}