Kuskal/Prim POJ 1789 Truck History

时间:2023-03-08 20:13:40

题目传送门

题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少

分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Prim而且要用邻接矩阵,邻接表的效率也不高。裸题但题目有点坑爹:(

Kruskal:

#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std; const int MAXN = 2e3 + 10;
const int INF = 0x3f3f3f3f;
struct UF {
int rt[MAXN], rk[MAXN];
void init(void) {
memset (rt, -1, sizeof (rt));
memset (rk, 0, sizeof (rk));
}
int Find(int x) {
return (rt[x] == -1) ? x : rt[x] = Find (rt[x]);
}
void Union(int x, int y) {
x = Find (x), y = Find (y);
if (x == y) return ;
if (rk[x] > rk[y]) {
rt[y] = x; rk[x] += rk[y] + 1;
}
else {
rt[x] = y; rk[y] += rk[x] + 1;
}
}
bool same(int x, int y) {
return Find (x) == Find (y);
}
}uf;
char s[MAXN][10];
struct Node
{
int u, v, w;
}node[MAXN*MAXN/2];
int n, tot; bool cmp(Node x, Node y) {return x.w < y.w;} void get_w(int x)
{
for (int i=1; i<x; ++i)
{
int res = 0;
for (int j=0; j<7; ++j)
{
if (s[i][j] != s[x][j]) res++;
}
node[++tot].u = i; node[tot].v = x; node[tot].w = res;
}
} int main(void) //POJ 1789 Truck History
{
// freopen ("POJ_1789.in", "r", stdin); while (scanf ("%d", &n) == 1)
{
if (n == 0) break; tot = 0;
for (int i=1; i<=n; ++i)
{
scanf ("%s", s[i]);
get_w (i);
}
sort (node+1, node+1+tot, cmp); int ans = 0; uf.init ();
for (int i=1; i<=tot; ++i)
{
int u = node[i].u; int v = node[i].v; int w = node[i].w;
if (!uf.same (u, v)) {uf.Union (u, v); ans += w;}
} printf ("The highest possible quality is 1/%d.\n", ans);
} return 0;
}

Prim:

/*
模版搞错了,纠结半天。。。算法还是想清楚才行啊
*/
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <iostream>
#include <vector>
#include <queue>
using namespace std; const int MAXN = 2e3 + 10;
const int INF = 0x3f3f3f3f;
int d[MAXN], w[MAXN][MAXN];
bool vis[MAXN];
int n;
char s[MAXN][10]; int Prim(int s) {
memset (vis, false, sizeof (vis));
memset (d, INF, sizeof (d)); d[s] = 0;
int ret = 0;
for (int i=1; i<=n; ++i) {
int mn = INF, u = -1;
for (int i=1; i<=n; ++i) {
if (!vis[i] && d[i] < mn) mn = d[u=i];
}
if (u == -1) return -1;
vis[u] = true; ret += d[u];
for (int i=1; i<=n; ++i) {
if (!vis[i] && d[i] > w[u][i]) {
d[i] = w[u][i];
}
}
}
return ret;
} void get_w(int x) {
for (int i=1; i<x; ++i) {
int res = 0;
for (int j=0; j<7; ++j) {
if (s[i][j] != s[x][j]) res++;
}
w[i][x] = w[x][i] = res;
}
} int main(void) {
while (scanf ("%d", &n) == 1) {
if (n == 0) break;
memset (w, INF, sizeof (w));
for (int i=1; i<=n; ++i) {
scanf ("%s", s[i]); get_w (i);
}
printf ("The highest possible quality is 1/%d.\n", Prim (1));
} return 0;
}