对于下面的4×4的矩阵,
1 5 3 9
3 7 5 6
9 4 6 4
7 3 1 3
对其进行Z字形扫描后得到长度为16的序列:
1 5 3 9 7 3 9 5 4 7 3 6 6 4 1 3
请实现一个Z字形扫描的程序,给定一个n×n的矩阵,输出对这个矩阵进行Z字形扫描的结果。
输入的第二行到第n+1行每行包含n个正整数,由空格分隔,表示给定的矩阵。
1 5 3 9
3 7 5 6
9 4 6 4
7 3 1 3
#include<iostream>
#include<vector>
using namespace std;
int main()
{ int n;
cin>>n;
int a[500][500]={0};
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cin>>a[i][j];
}
}
for(int i=0;i<=(2*(n-1));i++)
{
for(int k=0;k<n;k++ )
{
for(int j=0;j<n;j++)
{
if(k+j==i)
{
if(i%2==0)
{
cout<<a[j][k]<<" ";
}else{
cout<<a[k][j]<<" ";
}
}
}
}
}
return 0;
}
其二:
分析这类题,首先要找出扫描的规律,从题目中可以发现,扫描是成Z字形的。那么也就是说对于扫描输出有四种状态,每次输出要判定下一次的行走路线,走一步就输出一个。
四种状态为{right,leftDown,down,rightUp}。
开始我还怀疑,Z字形扫描矩阵是否能够遍历矩阵所有的元素。下面我们来分析一下:
1、前提是这个矩阵是一个n维方阵,假设为Anxn.
2、从输出当前的元素A[i][j],并根据当前的状态来判断下一步的扫描状态。该如何判断呢?可以发现每次在执行完当前状态后,行号i或者列号j都有可能发生改变,那么就可以结合当前状态和行,列号的取值来判定下一步的行走路线。
从上图中我们可以发现:
right状态始终在首行或者尾行上执行,并且执行right状态后列号j会增加1,即j = j+1。所以我们可以根据当前状态的下一步状态有两种:
当i == 0时,state = leftDown;
当i == n-1时,state = rightUp。
执行完leftDown状态后,i = i+1,j = j-1,其下一步状态有三种:
当 j == 0 && i != n-1时,state = down;
当 row == n-1时,state = right;
其它情况,state = leftDown(自身状态)。
对于rightUp和down状态,其分析方法和上面两种类似,就不再做分析。
综合上面分析来看,状态每次要发生改变的话,行号或者列号必须处于临界状态,即它们的取值为{0,n-1}。
#include <iostream> using namespace std; int A[501][501];
enum Choice
{
rightTowards,//向移动
rightUp,//向右上移动
down,//向下移动
leftDown//向左下移动
}; void zigzagScan(int n)
{
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
cin >> A[i][j];
int row = 0, col = 0;
Choice choice = rightTowards;
//row = n-1&&col = n-1的情况在while循环结束后处理,防止出现越界的情况
while (row != n - 1 || col != n - 1)
{
cout << A[row][col] << ' ';
switch (choice)
{
case rightTowards:
col++;
if (row == 0)
choice = leftDown;
else
choice = rightUp;
break;
case rightUp:
row--;
col++;
if (row == 0 && col != n - 1)
choice = rightTowards;
else if (col == n - 1)
choice = down;
else
choice = rightUp;
break;
case down:
row++;
if (col == 0)
choice = rightUp;
else
choice = leftDown;
break;
case leftDown:
row++;
col--;
if (col == 0 && row != n - 1)
choice = down;
else if (row == n - 1)
choice = rightTowards;
else
choice = leftDown;
break;
}
}
cout << A[n - 1][n - 1];
} void main(void)
{
int n;
while (cin >> n)
{
zigzagScan(n);
}
}