Given two dataframes df_1
and df_2
, how to join them such that datetime column df_1
is in between start
and end
in dataframe df_2
:
给定两个数据帧df_1和df_2,如何连接它们使得datetime列df_1位于数据帧df_2的开始和结束之间:
print df_1
timestamp A B
0 2016-05-14 10:54:33 0.020228 0.026572
1 2016-05-14 10:54:34 0.057780 0.175499
2 2016-05-14 10:54:35 0.098808 0.620986
3 2016-05-14 10:54:36 0.158789 1.014819
4 2016-05-14 10:54:39 0.038129 2.384590
print df_2
start end event
0 2016-05-14 10:54:31 2016-05-14 10:54:33 E1
1 2016-05-14 10:54:34 2016-05-14 10:54:37 E2
2 2016-05-14 10:54:38 2016-05-14 10:54:42 E3
Get corresponding event
where df1.timestamp
is between df_2.start
and df2.end
获取df1.timestamp介于df_2.start和df2.end之间的相应事件
timestamp A B event
0 2016-05-14 10:54:33 0.020228 0.026572 E1
1 2016-05-14 10:54:34 0.057780 0.175499 E2
2 2016-05-14 10:54:35 0.098808 0.620986 E2
3 2016-05-14 10:54:36 0.158789 1.014819 E2
4 2016-05-14 10:54:39 0.038129 2.384590 E3
5 个解决方案
#1
22
One simple solution is create interval index
from start and end
setting closed = both
then use get_loc
to get the event i.e (Hope all the date times are in timestamps dtype )
一个简单的解决方案是创建间隔索引从开始和结束设置关闭=然后使用get_loc来获取事件,即(希望所有日期时间都在时间戳dtype)
df_2.index = pd.IntervalIndex.from_arrays(df_2['start'],df_2['end'],closed='both')
df_1['event'] = df_1['timestamp'].apply(lambda x : df_2.iloc[df_2.index.get_loc(x)]['event'])
Output :
timestamp A B event 0 2016-05-14 10:54:33 0.020228 0.026572 E1 1 2016-05-14 10:54:34 0.057780 0.175499 E2 2 2016-05-14 10:54:35 0.098808 0.620986 E2 3 2016-05-14 10:54:36 0.158789 1.014819 E2 4 2016-05-14 10:54:39 0.038129 2.384590 E3
#2
12
A slight improvement to Dark's solution:
对Dark的解决方案略有改进:
idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
event = df_2.loc[idx.get_indexer(df_1.timestamp), 'event']
event
0 E1
1 E2
1 E2
1 E2
2 E3
Name: event, dtype: object
df_1['event'] = event.values
df_1
timestamp A B event
0 2016-05-14 10:54:33 0.020228 0.026572 E1
1 2016-05-14 10:54:34 0.057780 0.175499 E2
2 2016-05-14 10:54:35 0.098808 0.620986 E2
3 2016-05-14 10:54:36 0.158789 1.014819 E2
4 2016-05-14 10:54:39 0.038129 2.384590 E3
Reference: A question on IntervalIndex.get_indexer.
参考:关于IntervalIndex.get_indexer的问题。
#3
7
Option 1
idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
df_2.index=idx
df_1['event']=df_2.loc[df_1.timestamp,'event'].values
Option 2
df_2['timestamp']=df_2['end']
pd.merge_asof(df_1,df_2[['timestamp','event']],on='timestamp',direction ='forward',allow_exact_matches =True)
Out[405]:
timestamp A B event
0 2016-05-14 10:54:33 0.020228 0.026572 E1
1 2016-05-14 10:54:34 0.057780 0.175499 E2
2 2016-05-14 10:54:35 0.098808 0.620986 E2
3 2016-05-14 10:54:36 0.158789 1.014819 E2
4 2016-05-14 10:54:39 0.038129 2.384590 E3
#4
5
You can use the module pandasql
您可以使用模块pandasql
import pandasql as ps
sqlcode = '''
select df_1.timestamp
,df_1.A
,df_1.B
,df_2.event
from df_1
inner join df_2
on d1.timestamp between df_2.start and df2.end
'''
newdf = ps.sqldf(sqlcode,locals())
#5
2
In this method, we assume TimeStamp objects are used.
在此方法中,我们假设使用了TimeStamp对象。
df2 start end event
0 2016-05-14 10:54:31 2016-05-14 10:54:33 E1
1 2016-05-14 10:54:34 2016-05-14 10:54:37 E2
2 2016-05-14 10:54:38 2016-05-14 10:54:42 E3
event_num = len(df2.event)
def get_event(t):
event_idx = ((t >= df2.start) & (t <= df2.end)).dot(np.arange(event_num))
return df2.event[event_idx]
df1["event"] = df1.timestamp.transform(get_event)
Explanation of get_event
get_event的解释
For each timestamp in df1
, say t0 = 2016-05-14 10:54:33
,
对于df1中的每个时间戳,比如t0 = 2016-05-14 10:54:33,
(t0 >= df2.start) & (t0 <= df2.end)
will contain 1 true. (See example 1). Then, take a dot product with np.arange(event_num)
to get the index of the event that a t0
belongs to.
(t0> = df2.start)&(t0 <= df2.end)将包含1个true。 (见例1)。然后,使用带有np.arange(event_num)的点积来获取t0所属事件的索引。
Examples:
Example 1
t0 >= df2.start t0 <= df2.end After & np.arange(3)
0 True True -> T 0 event_idx
1 False True -> F 1 -> 0
2 False True -> F 2
Take t2 = 2016-05-14 10:54:35
for another example
另取一个例子,取t2 = 2016-05-14 10:54:35
t2 >= df2.start t2 <= df2.end After & np.arange(3)
0 True False -> F 0 event_idx
1 True True -> T 1 -> 1
2 False True -> F 2
We finally use transform
to transform each timestamp into an event.
我们最终使用transform将每个时间戳转换为一个事件。
#1
22
One simple solution is create interval index
from start and end
setting closed = both
then use get_loc
to get the event i.e (Hope all the date times are in timestamps dtype )
一个简单的解决方案是创建间隔索引从开始和结束设置关闭=然后使用get_loc来获取事件,即(希望所有日期时间都在时间戳dtype)
df_2.index = pd.IntervalIndex.from_arrays(df_2['start'],df_2['end'],closed='both')
df_1['event'] = df_1['timestamp'].apply(lambda x : df_2.iloc[df_2.index.get_loc(x)]['event'])
Output :
timestamp A B event 0 2016-05-14 10:54:33 0.020228 0.026572 E1 1 2016-05-14 10:54:34 0.057780 0.175499 E2 2 2016-05-14 10:54:35 0.098808 0.620986 E2 3 2016-05-14 10:54:36 0.158789 1.014819 E2 4 2016-05-14 10:54:39 0.038129 2.384590 E3
#2
12
A slight improvement to Dark's solution:
对Dark的解决方案略有改进:
idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
event = df_2.loc[idx.get_indexer(df_1.timestamp), 'event']
event
0 E1
1 E2
1 E2
1 E2
2 E3
Name: event, dtype: object
df_1['event'] = event.values
df_1
timestamp A B event
0 2016-05-14 10:54:33 0.020228 0.026572 E1
1 2016-05-14 10:54:34 0.057780 0.175499 E2
2 2016-05-14 10:54:35 0.098808 0.620986 E2
3 2016-05-14 10:54:36 0.158789 1.014819 E2
4 2016-05-14 10:54:39 0.038129 2.384590 E3
Reference: A question on IntervalIndex.get_indexer.
参考:关于IntervalIndex.get_indexer的问题。
#3
7
Option 1
idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
df_2.index=idx
df_1['event']=df_2.loc[df_1.timestamp,'event'].values
Option 2
df_2['timestamp']=df_2['end']
pd.merge_asof(df_1,df_2[['timestamp','event']],on='timestamp',direction ='forward',allow_exact_matches =True)
Out[405]:
timestamp A B event
0 2016-05-14 10:54:33 0.020228 0.026572 E1
1 2016-05-14 10:54:34 0.057780 0.175499 E2
2 2016-05-14 10:54:35 0.098808 0.620986 E2
3 2016-05-14 10:54:36 0.158789 1.014819 E2
4 2016-05-14 10:54:39 0.038129 2.384590 E3
#4
5
You can use the module pandasql
您可以使用模块pandasql
import pandasql as ps
sqlcode = '''
select df_1.timestamp
,df_1.A
,df_1.B
,df_2.event
from df_1
inner join df_2
on d1.timestamp between df_2.start and df2.end
'''
newdf = ps.sqldf(sqlcode,locals())
#5
2
In this method, we assume TimeStamp objects are used.
在此方法中,我们假设使用了TimeStamp对象。
df2 start end event
0 2016-05-14 10:54:31 2016-05-14 10:54:33 E1
1 2016-05-14 10:54:34 2016-05-14 10:54:37 E2
2 2016-05-14 10:54:38 2016-05-14 10:54:42 E3
event_num = len(df2.event)
def get_event(t):
event_idx = ((t >= df2.start) & (t <= df2.end)).dot(np.arange(event_num))
return df2.event[event_idx]
df1["event"] = df1.timestamp.transform(get_event)
Explanation of get_event
get_event的解释
For each timestamp in df1
, say t0 = 2016-05-14 10:54:33
,
对于df1中的每个时间戳,比如t0 = 2016-05-14 10:54:33,
(t0 >= df2.start) & (t0 <= df2.end)
will contain 1 true. (See example 1). Then, take a dot product with np.arange(event_num)
to get the index of the event that a t0
belongs to.
(t0> = df2.start)&(t0 <= df2.end)将包含1个true。 (见例1)。然后,使用带有np.arange(event_num)的点积来获取t0所属事件的索引。
Examples:
Example 1
t0 >= df2.start t0 <= df2.end After & np.arange(3)
0 True True -> T 0 event_idx
1 False True -> F 1 -> 0
2 False True -> F 2
Take t2 = 2016-05-14 10:54:35
for another example
另取一个例子,取t2 = 2016-05-14 10:54:35
t2 >= df2.start t2 <= df2.end After & np.arange(3)
0 True False -> F 0 event_idx
1 True True -> T 1 -> 1
2 False True -> F 2
We finally use transform
to transform each timestamp into an event.
我们最终使用transform将每个时间戳转换为一个事件。