I have imported data from a file into a data frame in R. It is something like this.
我已经从一个文件中导入数据到r中的一个数据框架中。
Name Count Category
A 100 Cat1
C 10 Cat2
D 40 Cat1
E 30 Cat3
H 3 Cat3
Z 20 Cat2
M 50 Cat10
So now i want to add the Category column depending on the values in the column Name. So something like if Name = (A, D), Category = 'Cat1' etc.
现在我要根据列名中的值添加Category列。比如Name = (A, D), Category = 'Cat1'等等。
This is only a simple example I am giving. I have a large number of Names and Categories so I want a compact syntax. How can I do this?
这只是我举的一个简单的例子。我有大量的名称和类别,所以我想要一个简洁的语法。我该怎么做呢?
Edit: I've changed the example to better suit my needs as the name can be anything not numeric. Sorry for not being too clear before.
编辑:我已经更改了示例,以更好地满足我的需要,因为名称可以不是数字的。对不起,我之前讲得不太清楚。
5 个解决方案
#1
2
You can use a map. (UPDATED to use stringsAsFactors = FALSE
)
你可以用地图。(更新为使用stringsAsFactors = FALSE)
df <- data.frame( Name = c('A', 'C', 'D', 'E', 'H', 'Z', 'M'),
Count = c(100,10,40,30,3,20,50), stringsAsFactors = FALSE)
Categories <- list(Cat1 = c('A','D'),
Cat2 = c('C','Z'),
Cat3 = c('E','H'),
Cat10 = 'M')
nams <- names( Categories )
nums <- sapply(Categories, length)
CatMap <- unlist( Map( rep, nams, nums ) )
names(CatMap) <- unlist( Categories )
df <- transform( df, Category = CatMap[ Name ])
#2
3
You can use ifelse
. If your data frame were called df
you would do:
您可以使用ifelse。如果你的数据框被称为df,你会这样做:
df$cat <- ifelse(df$name<100, "Ones", "Hundreds")
df$cat <- ifelse(df$name<1000, df$cat, "Thousands")
#3
2
[Update following the OP's comment and altered Q]
[更新如下OP的评论和修改的Q]
DF <- data.frame(Name = c("A","C","D","E","H","Z","M"),
Count = c(100,10,40,30,3,20,50), stringsAsFactors = FALSE)
lookup <- data.frame(Name = c("A","C","D","E","H","Z","M"),
Category = paste("Cat", c(1,2,1,3,3,2,10), sep = ""),
stringsAsFactors = FALSE)
Using the above data frames, we can do a data base merge. You need to set-up lookup
for the Name
Category
combinations you want, which is OK if there aren't a very large number of Name
s (At least you only need to list them once each in lookup
and you don't have to do it in order - list all Cat1
Name
s first, etc):
使用上面的数据帧,我们可以进行数据库合并。你需要设置查找类别名称组合你想要的,这是好如果没有大量的名称(至少你只需要列出他们曾经在查找每个和你不需要这样做,所有Cat1名单第一,等等):
> merge(DF, lookup, by = "Name")
Name Count Category
1 A 100 Cat1
2 C 10 Cat2
3 D 40 Cat1
4 E 30 Cat3
5 H 3 Cat3
6 M 50 Cat10
7 Z 20 Cat2
> merge(DF, lookup, by = "Name", sort = FALSE)
Name Count Category
1 A 100 Cat1
2 C 10 Cat2
3 D 40 Cat1
4 E 30 Cat3
5 H 3 Cat3
6 Z 20 Cat2
7 M 50 Cat10
One option is indexing:
一种选择是索引:
foo <- function(x) {
out <- character(length = length(x))
chars <- c("Ones", "Tens", "Hundreds", "Thousands")
out[x < 10] <- chars[1]
out[x >= 10 & x < 100] <- chars[2]
out[x >= 100 & x < 1000] <- chars[3]
out[x >= 1000 & x < 10000] <- chars[4]
return(factor(out, levels = chars))
}
An alternative that scales better is,
一个更好的选择是,
bar <- function(x, cats = c("Ones", "Tens", "Hundreds", "Thousands")) {
out <- cats[floor(log10(x)) + 1]
factor(out, levels = cats)
}
#4
0
check out:
查看:
-
cut()
- 削减()
-
recode()
in thecar
package - 在汽车的包装上
#5
0
Perhaps simpler and more readable using ifelse and %in%:
使用ifelse和%可能更简单,可读性更好:
df <- data.frame( Name = c('A', 'C', 'D', 'E', 'H', 'Z', 'M'),
Count =c(100,10,40,30,3,20,50), stringsAsFactors = FALSE)
cat1 = c("A","D")
cat2 = c("C","Z")
cat3 = c("E","H")
cat10 = c("M")
df$Category = ifelse(df$Name %in% cat1, "Cat1",
ifelse(df$Name %in% cat2, "Cat2",
ifelse(df$Name %in% cat3, "Cat3",
ifelse(df$Name %in% cat10, "Cat10",
NA))))
Name Count Category
1 A 100 Cat1
2 C 10 Cat2
3 D 40 Cat1
4 E 30 Cat3
5 H 3 Cat3
6 Z 20 Cat2
7 M 50 Cat10
#1
2
You can use a map. (UPDATED to use stringsAsFactors = FALSE
)
你可以用地图。(更新为使用stringsAsFactors = FALSE)
df <- data.frame( Name = c('A', 'C', 'D', 'E', 'H', 'Z', 'M'),
Count = c(100,10,40,30,3,20,50), stringsAsFactors = FALSE)
Categories <- list(Cat1 = c('A','D'),
Cat2 = c('C','Z'),
Cat3 = c('E','H'),
Cat10 = 'M')
nams <- names( Categories )
nums <- sapply(Categories, length)
CatMap <- unlist( Map( rep, nams, nums ) )
names(CatMap) <- unlist( Categories )
df <- transform( df, Category = CatMap[ Name ])
#2
3
You can use ifelse
. If your data frame were called df
you would do:
您可以使用ifelse。如果你的数据框被称为df,你会这样做:
df$cat <- ifelse(df$name<100, "Ones", "Hundreds")
df$cat <- ifelse(df$name<1000, df$cat, "Thousands")
#3
2
[Update following the OP's comment and altered Q]
[更新如下OP的评论和修改的Q]
DF <- data.frame(Name = c("A","C","D","E","H","Z","M"),
Count = c(100,10,40,30,3,20,50), stringsAsFactors = FALSE)
lookup <- data.frame(Name = c("A","C","D","E","H","Z","M"),
Category = paste("Cat", c(1,2,1,3,3,2,10), sep = ""),
stringsAsFactors = FALSE)
Using the above data frames, we can do a data base merge. You need to set-up lookup
for the Name
Category
combinations you want, which is OK if there aren't a very large number of Name
s (At least you only need to list them once each in lookup
and you don't have to do it in order - list all Cat1
Name
s first, etc):
使用上面的数据帧,我们可以进行数据库合并。你需要设置查找类别名称组合你想要的,这是好如果没有大量的名称(至少你只需要列出他们曾经在查找每个和你不需要这样做,所有Cat1名单第一,等等):
> merge(DF, lookup, by = "Name")
Name Count Category
1 A 100 Cat1
2 C 10 Cat2
3 D 40 Cat1
4 E 30 Cat3
5 H 3 Cat3
6 M 50 Cat10
7 Z 20 Cat2
> merge(DF, lookup, by = "Name", sort = FALSE)
Name Count Category
1 A 100 Cat1
2 C 10 Cat2
3 D 40 Cat1
4 E 30 Cat3
5 H 3 Cat3
6 Z 20 Cat2
7 M 50 Cat10
One option is indexing:
一种选择是索引:
foo <- function(x) {
out <- character(length = length(x))
chars <- c("Ones", "Tens", "Hundreds", "Thousands")
out[x < 10] <- chars[1]
out[x >= 10 & x < 100] <- chars[2]
out[x >= 100 & x < 1000] <- chars[3]
out[x >= 1000 & x < 10000] <- chars[4]
return(factor(out, levels = chars))
}
An alternative that scales better is,
一个更好的选择是,
bar <- function(x, cats = c("Ones", "Tens", "Hundreds", "Thousands")) {
out <- cats[floor(log10(x)) + 1]
factor(out, levels = cats)
}
#4
0
check out:
查看:
-
cut()
- 削减()
-
recode()
in thecar
package - 在汽车的包装上
#5
0
Perhaps simpler and more readable using ifelse and %in%:
使用ifelse和%可能更简单,可读性更好:
df <- data.frame( Name = c('A', 'C', 'D', 'E', 'H', 'Z', 'M'),
Count =c(100,10,40,30,3,20,50), stringsAsFactors = FALSE)
cat1 = c("A","D")
cat2 = c("C","Z")
cat3 = c("E","H")
cat10 = c("M")
df$Category = ifelse(df$Name %in% cat1, "Cat1",
ifelse(df$Name %in% cat2, "Cat2",
ifelse(df$Name %in% cat3, "Cat3",
ifelse(df$Name %in% cat10, "Cat10",
NA))))
Name Count Category
1 A 100 Cat1
2 C 10 Cat2
3 D 40 Cat1
4 E 30 Cat3
5 H 3 Cat3
6 Z 20 Cat2
7 M 50 Cat10