动态规划——最长不下降子序列(LIS)

时间:2022-10-30 22:23:28

  最长不降子序列是这样一个问题:

动态规划——最长不下降子序列(LIS)

  

  下面介绍动态规划的做法。

  令 dp[i] 表示以 A[i] 结尾的最长不下降序列长度。这样对 A[i] 来说就会有两种可能:

    1. 如果存在 A[i] 之前的元素 A[j] (j<i),使得 A[j]≤A[i] 且 dp[j]+1>dp[i],那么就把 A[i] 跟在以 A[j] 结尾的 LIS 后面,形成一条更长的不下降子序列(令 dp[i]=dp[j]+1)。
    2. 如果 A[i] 之前的元素都比 A[i] 大,那么 A[i] 就只好自己形成一条 LIS,但是长度为 1。

  由此可以写出状态转移方程

            dp[i] = max{1, dp[j]+1} (j=1,2,....,i-1&&A[j]<A[i])

  上面的状态转移方程中隐含了边界:dp[i]=1(1≤i≤n)。显然 dp[i] 只与小于 i 的 j 有关,因此只要让 i 从小到大遍历即可求出整个 dp 数组。然后从整个 dp 数组中找出最大的那个就是要寻求的整个序列的 LIS 长度,整体复杂度为 O(n2)。

  代码如下:

 /*
最长不下降子序列
*/ #include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <stdbool.h> #define maxn 100
int A[maxn], dp[maxn]; int main() {
int n, i, j;
scanf("%d", &n);
for(i=; i<=n; ++i) { // 输入序列
scanf("%d", &A[i]);
}
int ans = -; // 记录最大的长度
for(i=; i<=n; ++i) {
dp[i] = ; // 初始为仅为自己
for(j=; j<i; ++j) {
if(A[i] >= A[j] && (dp[j]+ > dp[i])) {
dp[i] = dp[j] + ; // 状态转移方程
}
}
if(dp[i] > ans) {
ans = dp[i]; // 保存最大值
}
}
printf("%d\n", ans); return ;
}