I am new to Python and I am not sure how to solve the following problem.
我是Python新手,不知道如何解决下面的问题。
I have a function:
我有一个函数:
def EOQ(D,p,ck,ch):
Q = math.sqrt((2*D*ck)/(ch*p))
return Q
Say I have the dataframe
比方说我有dataframe。
df = pd.DataFrame({"D": [10,20,30], "p": [20, 30, 10]})
D p
0 10 20
1 20 30
2 30 10
ch=0.2
ck=5
And ch
and ck
are float types. Now I want to apply the formula to every row on the dataframe and return it as an extra row 'Q'. An example (that does not work) would be:
ch和ck是浮动类型。现在我想将公式应用到dataframe上的每一行,并将其作为额外的行'Q'返回。一个例子(不管用)是:
df['Q']= map(lambda p, D: EOQ(D,p,ck,ch),df['p'], df['D'])
(returns only 'map' types)
(只返回“地图”类型)
I will need this type of processing more in my project and I hope to find something that works.
在我的项目中,我需要更多的这种类型的处理,我希望能找到一些有用的东西。
2 个解决方案
#1
12
As I don't know what PartMaster
is, the following should work:
因为我不知道PartMaster是什么,下面的工作应该是:
def EOQ(D,p,ck,ch):
p,D = Partmaster
Q = math.sqrt((2*D*ck)/(ch*p))
return Q
ch=0.2
ck=5
df['Q'] = df.apply(lambda row: EOQ(row['D'], row['p'], ck, ch), axis=1)
df
If all you're doing is calculating the square root of some result then use the np.sqrt
method this is vectorised and will be significantly faster:
如果你所做的就是计算某个结果的平方根然后使用np。sqrt方法是矢量化的,而且速度会快得多:
In [80]:
df['Q'] = np.sqrt((2*df['D']*ck)/(ch*df['p']))
df
Out[80]:
D p Q
0 10 20 5.000000
1 20 30 5.773503
2 30 10 12.247449
Timings
计时
For a 30k row df:
30k行df:
In [92]:
import math
ch=0.2
ck=5
def EOQ(D,p,ck,ch):
Q = math.sqrt((2*D*ck)/(ch*p))
return Q
%timeit np.sqrt((2*df['D']*ck)/(ch*df['p']))
%timeit df.apply(lambda row: EOQ(row['D'], row['p'], ck, ch), axis=1)
1000 loops, best of 3: 622 µs per loop
1 loops, best of 3: 1.19 s per loop
You can see that the np method is ~1900 X faster
你可以看到np方法是~1900倍。
#2
0
I agree with EdChum's answer. A more general approach would be:
我同意爱德华的回答。更一般的办法是:
def RowWiseOperation(x):
if x.ExistingColumn1 in x.ExistingColumn.split(','):
return value1
else:
return value2
YourDataFrame['NewColumn'] = YourDataFrame.apply(RowWiseOperation, axis = 1)
#1
12
As I don't know what PartMaster
is, the following should work:
因为我不知道PartMaster是什么,下面的工作应该是:
def EOQ(D,p,ck,ch):
p,D = Partmaster
Q = math.sqrt((2*D*ck)/(ch*p))
return Q
ch=0.2
ck=5
df['Q'] = df.apply(lambda row: EOQ(row['D'], row['p'], ck, ch), axis=1)
df
If all you're doing is calculating the square root of some result then use the np.sqrt
method this is vectorised and will be significantly faster:
如果你所做的就是计算某个结果的平方根然后使用np。sqrt方法是矢量化的,而且速度会快得多:
In [80]:
df['Q'] = np.sqrt((2*df['D']*ck)/(ch*df['p']))
df
Out[80]:
D p Q
0 10 20 5.000000
1 20 30 5.773503
2 30 10 12.247449
Timings
计时
For a 30k row df:
30k行df:
In [92]:
import math
ch=0.2
ck=5
def EOQ(D,p,ck,ch):
Q = math.sqrt((2*D*ck)/(ch*p))
return Q
%timeit np.sqrt((2*df['D']*ck)/(ch*df['p']))
%timeit df.apply(lambda row: EOQ(row['D'], row['p'], ck, ch), axis=1)
1000 loops, best of 3: 622 µs per loop
1 loops, best of 3: 1.19 s per loop
You can see that the np method is ~1900 X faster
你可以看到np方法是~1900倍。
#2
0
I agree with EdChum's answer. A more general approach would be:
我同意爱德华的回答。更一般的办法是:
def RowWiseOperation(x):
if x.ExistingColumn1 in x.ExistingColumn.split(','):
return value1
else:
return value2
YourDataFrame['NewColumn'] = YourDataFrame.apply(RowWiseOperation, axis = 1)