求平面内两条直线的交点

时间:2021-10-07 21:25:54

The 求平面内两条直线的交点 and 求平面内两条直线的交点 coordinates of the point of intersection of two non-vertical lines can easily be found using the following substitutions and rearrangements.

Suppose that two lines have the equations 求平面内两条直线的交点 and 求平面内两条直线的交点 where 求平面内两条直线的交点 and 求平面内两条直线的交点 are the slopes (gradients) of the lines and where 求平面内两条直线的交点 and 求平面内两条直线的交点 are the y-intercepts of the lines. At the point where the two lines intersect (if they do), both 求平面内两条直线的交点 coordinates will be the same, hence the following equality:

求平面内两条直线的交点.

We can rearrange this expression in order to extract the value of 求平面内两条直线的交点,

求平面内两条直线的交点,

and so,

求平面内两条直线的交点.

To find the y coordinate, all we need to do is substitute the value of x into either one of the two line equations, for example, into the first:

求平面内两条直线的交点.

Hence, the point of intersection is

求平面内两条直线的交点.

Note if a = b then the two lines are parallel. If c ≠ d as well, the lines are different and there is no intersection, otherwise the two lines are identical.