I have a numpy operation that looks like the following:
我有一个看起来如下的numpy操作:
for i in range(i_max):
for j in range(j_max):
r[i, j, x[i, j], y[i, j]] = c[i, j]
where x
, y
and c
have the same shape.
其中x,y和c具有相同的形状。
Is it possible to use numpy's advanced indexing to speed this operation up?
是否可以使用numpy的高级索引来加速此操作?
I tried using:
我试过用:
i = numpy.arange(i_max)
j = numpy.arange(j_max)
r[i, j, x, y] = c
However, I didn't get the result I expected.
但是,我没有得到我预期的结果。
2 个解决方案
#1
4
The indexing arrays need to be broadcastable for this to work. The only change needed is to add an axis to the first index i
to match the shape with the rest. The quick way to accomplish this is by indexing with None
(which is equivalent to numpy.newaxis
):
索引数组需要是可广播的才能工作。唯一需要做的更改是将轴添加到第一个索引i以使形状与其余索引匹配。快速实现此目的的方法是使用None进行索引(相当于numpy.newaxis):
i = numpy.arange(i_max)
j = numpy.arange(j_max)
r[i[:,None], j, x, y] = c
#2
5
Using linear indexing
-
使用线性索引 -
d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
Benchmarking and verification
基准和验证
Define functions -
定义功能 -
def linear_indx(r,x,y,c,i_max,j_max):
d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
return r
def org_app(r,x,y,c,i_max,j_max):
for i in range(i_max):
for j in range(j_max):
r[i, j, x[i,j], y[i,j]] = c[i,j]
return r
Setup input arrays and benchmark -
设置输入数组和基准 -
In [134]: # Setup input arrays
...: i_max = 40
...: j_max = 50
...: D0 = 60
...: D1 = 70
...: N = 80
...:
...: r = np.zeros((D0,D1,N,N))
...: c = np.random.rand(i_max,j_max)
...:
...: x = np.random.randint(0,N,(i_max,j_max))
...: y = np.random.randint(0,N,(i_max,j_max))
...:
In [135]: # Make copies for testing, as both functions make in-situ changes
...: r1 = r.copy()
...: r2 = r.copy()
...:
In [136]: # Verify results by comparing with original loopy approach
...: np.allclose(linear_indx(r1,x,y,c,i_max,j_max),org_app(r2,x,y,c,i_max,j_max))
Out[136]: True
In [137]: # Make copies for testing, as both functions make in-situ changes
...: r1 = r.copy()
...: r2 = r.copy()
...:
In [138]: %timeit linear_indx(r1,x,y,c,i_max,j_max)
10000 loops, best of 3: 115 µs per loop
In [139]: %timeit org_app(r2,x,y,c,i_max,j_max)
100 loops, best of 3: 2.25 ms per loop
#1
4
The indexing arrays need to be broadcastable for this to work. The only change needed is to add an axis to the first index i
to match the shape with the rest. The quick way to accomplish this is by indexing with None
(which is equivalent to numpy.newaxis
):
索引数组需要是可广播的才能工作。唯一需要做的更改是将轴添加到第一个索引i以使形状与其余索引匹配。快速实现此目的的方法是使用None进行索引(相当于numpy.newaxis):
i = numpy.arange(i_max)
j = numpy.arange(j_max)
r[i[:,None], j, x, y] = c
#2
5
Using linear indexing
-
使用线性索引 -
d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
Benchmarking and verification
基准和验证
Define functions -
定义功能 -
def linear_indx(r,x,y,c,i_max,j_max):
d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
return r
def org_app(r,x,y,c,i_max,j_max):
for i in range(i_max):
for j in range(j_max):
r[i, j, x[i,j], y[i,j]] = c[i,j]
return r
Setup input arrays and benchmark -
设置输入数组和基准 -
In [134]: # Setup input arrays
...: i_max = 40
...: j_max = 50
...: D0 = 60
...: D1 = 70
...: N = 80
...:
...: r = np.zeros((D0,D1,N,N))
...: c = np.random.rand(i_max,j_max)
...:
...: x = np.random.randint(0,N,(i_max,j_max))
...: y = np.random.randint(0,N,(i_max,j_max))
...:
In [135]: # Make copies for testing, as both functions make in-situ changes
...: r1 = r.copy()
...: r2 = r.copy()
...:
In [136]: # Verify results by comparing with original loopy approach
...: np.allclose(linear_indx(r1,x,y,c,i_max,j_max),org_app(r2,x,y,c,i_max,j_max))
Out[136]: True
In [137]: # Make copies for testing, as both functions make in-situ changes
...: r1 = r.copy()
...: r2 = r.copy()
...:
In [138]: %timeit linear_indx(r1,x,y,c,i_max,j_max)
10000 loops, best of 3: 115 µs per loop
In [139]: %timeit org_app(r2,x,y,c,i_max,j_max)
100 loops, best of 3: 2.25 ms per loop