当数据量比较大的时候,提升查询效率就是需要去考虑的事情了。一个百万级别的表格,如果不做任何优化的话,即使是最简单的查询语句执行起来也是慢的让人难以接受;当然“优化”本身是一个比较复杂的工程,从设计表、字段到查询语句的写法都有很多讲究,这里只考虑索引的方式,且是最普通的索引;
下面的操作中对应数据库表w008_execrise_info(8000数据量), w008_wf02_info(4000数据量)
1 任务表数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
SELECT
w.*
FROM
w008_wf02_info w
WHERE
w.is_removed =0
AND w.wfno = 'WF02'
AND EXISTS (
SELECT
1
FROM
w008_execrise_info info
JOIN w008_privilege_allocation P ON (
info.subjecttyp = P.subjecttyp
AND info.gradetyp = P.gradetyp
AND P.loginname = w.create_by
AND P.verifyusers = 'yixi_li'
AND P.wftype = 20
)
WHERE
info.is_removed =0
AND info.wfid = w.wfid
)
ORDER BY
create_date DESC
|
执行结果:耗时在3秒左右(这个数据量,这个速度就比较慢了)
顺带说一句,这里把w.* 改成对应的字段也会稍微的提高一些查询速度(毕竟少了一步把*转成对应字段的操作),在标准的查询规范中也不会写成table.*这种方式的。
2 添加索引:
虽说索引可以提高查询速度,但是不代表加了索引就一定会加快查询速度,有时甚至会适得其反。
一般来说索引会加在where 后面的查询字段,尤其是关联字段上面,这里w008_execrise_info 表数据量最大,暂时针对这个表进行处理;w008_execrise_info 表涉及四个字段:subjecttyp,gradetyp,wfid和is_removed。
其中is_removed先不考虑,subjecttyp和gradetyp保存的是字典表的数据(数据内容比较少,类似10 20 30 40),wfid保存的是数字类型的字符串。
一个索引起到的效果还取决于这样一个条件,一般来说添加索引的字段的值"唯一性"越明显越好,在这里,subjecttyp和gradetyp包含大量的重复值,索引效果会“不明显”一些,而wfid 更像是“主键”,相对应的效果会好很多。
2.1 subjecttyp 和gradetyp添加索引
CREATE INDEX w008_execrise_info_gradetyp_index ON w008_execrise_info (gradetyp);
CREATE INDEX w008_execrise_info_subjecttyp_index ON w008_execrise_info (subjecttyp);
添加后执行时间大约2秒,快了一点点
2.2 对wfid添加索引
CREATE INDEX w008_execrise_info_wfid_index ON w008_execrise_info (wfid);
再次执行,0.2秒左右,快了很多
再补充一句,有很多情况下索引是不起作用的,比如 like后面跟的字段,还有条件语句or关联的字段,这种情况就是要考虑查询策略了。
3 查看当前表的索引内容;
select * from pg_indexes where tablename='w008_execrise_info';
select * from pg_statio_all_indexes where relname='w008_execrise_info';
4 删除索引
DROP INDEX indexName;
5 重置索引
对于一些经常改动的表,如果时间长了发现查询效率变慢,可以考虑重置一下索引;
因为如果表的内容被频繁的修改的话会产生许多类似'索引碎片'的东西,会导致查询索引本身的时间变长;
1
2
3
|
REINDEX INDEX index_name;//重置单个索引
REINDEX TABLE table_name;//重置整个表的索引
REINDEX DATABASE db_name;//终止整个数据库的所以你
|
补充:PostgreSql查询优化之根据执行计划优化SQL
1、执行计划路径选择
postgresql查询规划过程中,查询请求的不同执行方案是通过建立不同的路径来表达的,在生成许多符合条件的路径之后,要从中选择出代价最小的路径(基于成本运算),把它转化为一个计划,传递给执行器执行,规划器的核心工作就是生成多条路径,然后从中找出最优的那一条。
1.1代价评估
评估路径优劣的依据是用系统表pg_statistic中的统计信息估算出来的不同路径的代价(cost),PostgreSQL估计计划成本的方式:基于统计信息估计计划中各个节点的成本。PostgreSQL会分析各个表来获取一个统计信息样本(这个操作通常是由autovacuum这个守护进程周期性的执行analyze,来收集这些统计信息,然后保存到pg_statistic和pg_class里面)。
1.2用于估算代价的参数postgresql.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
# - Planner Cost Constants -
#seq_page_cost = 1.0 # measured on an arbitrary scale 顺序磁盘扫描时单个页面的开销
#random_page_cost = 4.0 # same scale as above 随机磁盘访问时单页面的读取开销
#cpu_tuple_cost = 0.01 # same scale as above cpu处理每一行的开销
#cpu_index_tuple_cost = 0.005 # same scale as above cpu处理每个索引行的开销
#cpu_operator_cost = 0.0025 # same scale as above cpu处理每个运算符或者函数调用的开销
#parallel_tuple_cost = 0.1 # same scale as above 计算并行处理的成本,如果成本高于非并行,则不会开启并行处理。
#parallel_setup_cost = 1000.0 # same scale as above
#min_parallel_relation_size = 8MB
#effective_cache_size = 4GB 再一次索引扫描中可用的文件系统内核缓冲区有效大小
|
也可以使用 show all的方式查看
1.3 路径的选择
--查看表信息
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
highgo=# \d t_jcxxgl_tjaj
Table "db_jcxx.t_jcxxgl_tjaj"
Column | Type | Modifiers --------------+--------------------------------+-----------
c_bh | character (32) | not null
c_xzdm | character varying (300) |
c_jgid | character (32) |
c_ajbm | character (22) |
...
Indexes:
"t_jcxxgl_tjaj_pkey" PRIMARY KEY , btree (c_bh)
"idx_ttjaj_cah" btree (c_ah)
"idx_ttjaj_dslrq" btree (d_slrq)
|
首先更新统计信息vacuum analyze t_jcxxgl_tjaj,许多时候可能因为统计信息的不准确导致了不正常的执行计划--执行计划。
--执行计划,全表扫描
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
highgo=# explain (analyze,verbose,costs,buffers,timing) select c_bh,c_xzdm,c_jgid,c_ajbm from t_jcxxgl_tjaj where d_slrq >= '2018-03-18' ;
QUERY PLAN ------------------------------------------------------------------------------------------------------------
Seq Scan on db_jcxx.t_jcxxgl_tjaj (cost=0.00..9.76 rows =3 width=96) (actual time =1.031..1.055 rows =3 loops
=1)
Output : c_bh, c_xzdm, c_jgid, c_ajbm
Filter: (t_jcxxgl_tjaj.d_slrq >= '2018-03-18' :: date )
Rows Removed by Filter: 138
Buffers: shared hit=8
Planning time : 6.579 ms
Execution time : 1.163 ms
(7 rows )
|
如上,d_slrq是有索引的,但是执行计划中并没有走索引,为什么呢?我们继续往下看。
--执行计划,关闭全表扫描
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
highgo=# set session enable_seqscan = off ;
SET
highgo=# explain (analyze,verbose,costs,buffers,timing) select c_bh,c_xzdm,c_jgid,c_ajbm from t_jcxxgl_tjaj where d_slrq >= '2018-03-18' ;
QUERY PLAN ------------------------------------------------------------------------------------------------------------
Index Scan using idx_ttjaj_dslrq on db_jcxx.t_jcxxgl_tjaj (cost=0.14..13.90 rows =3 width=96) (actual time =0.012..0.026 rows =3 loops=1)
Output : c_bh, c_xzdm, c_jgid, c_ajbm
Index Cond: (t_jcxxgl_tjaj.d_slrq >= '2018-03-18' :: date )
Buffers: shared hit=4
Planning time : 0.309 ms
Execution time : 0.063 ms
(6 rows )
|
d_slrq上面有btree索引,但是查看执行计划并没有走索引,这是为什么呢?
代价计算:
一个路径的估算由三部分组成:启动代价(startup cost),总代价(totalcost),执行结果的排序方式(pathkeys)
代价估算公式:
总代价=启动代价+I/O代价+CPU代价(cost=S+P+W*T)
P:执行时要访问的页面数,反应磁盘的I/O次数
T:表示在执行时所要访问的元组数,反映了cpu开销
W:表示磁盘I/O代价和CPU开销建的权重因子
统计信息:
统计信息的其中一部分是每个表和索引中项的总数,以及每个表和索引占用的磁盘块数。这些信息保存在pg_class表的reltuples和relpages列中。我们可以这样查询相关信息:
--查看统计信息
1
2
3
4
5
6
7
|
highgo=# select relpages,reltuples from pg_class where relname = 't_jcxxgl_tjaj' ;
relpages | reltuples ----------+-----------
8 | 141
(1 row)
|
total_cost = 1(seq_page_cost)*8(磁盘总页数)+0.01(cpu_tuple_cost)*141(表的总记录数)+0.0025(cpu_operation_cost)*141(表的总记录数)=9.7625
可以看到走索引的cost=13.90比全表扫描cost=9.76要大。所以上面没有关闭全表扫描的时候,根据成本代价,执行计划走的全表扫描。在表较小的情况下,全表扫描比索引扫描更有效, index scan 至少要发生两次I/O,一次是读取索引块,一次是读取数据块。
2、一个SQL优化实例
2.1慢SQL:
1
|
select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqly from db_zxzhld.t_zhld_db dbxx join db_zxzhld.t_zhld_ajdbxx dbaj on dbxx.c_bh = dbaj.c_dbbh where dbxx.n_valid=1 and dbxx.n_state in (1,2,3) and dbxx.c_dbztbh= '1003' and dbaj.c_zblx= '1003' and dbaj.c_dbfy= '0' and dbaj.c_gy = '2550' and c_ajbh in ( select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx where n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc , c_ajbh asc limit 15 offset 0;
|
慢sql耗时:7s
先过下这个sql是干什么的、首先dbxx和dbaj的一个join连接然后dbaj.c_ajbh要包含在zbaj表里面,做了个排序,取了15条记录、大概就这样。
Sql有个缺点就是我不知道查询的字段是从那个表里面取的、建议加上表别名.字段。
查看该sql的表的数据量:
1
2
3
|
t_zhld_db :1311
t_zhld_ajdbxx :341296
t_zhld_zbajxx :1027619
|
执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
Limit (cost=36328.67..36328.68 rows =1 width=107) (actual time =88957.677..88957.729 rows =15 loops=1)
-> Sort (cost=36328.67..36328.68 rows =1 width=107) (actual time =88957.653..88957.672 rows =15 loops=1)
Sort Key : dbaj.d_larq, dbaj.c_ajbh
Sort Method: top -N heapsort Memory: 27kB
-> Nested Loop Semi Join (cost=17099.76..36328.66 rows =1 width=107) (actual time =277.794..88932.662 rows =8605 loops=1)
Join Filter: ((dbaj.c_ajbh)::text = (t_zhld_zbajxx.c_ajbh)::text)
Rows Removed by Join Filter: 37018710
-> Nested Loop (cost=0.00..19200.59 rows =1 width=107) (actual time =199.141..601.845 rows =8605 loops=1)
Join Filter: (dbxx.c_bh = dbaj.c_dbbh)
Rows Removed by Join Filter: 111865
-> Seq Scan on t_zhld_ajdbxx dbaj (cost=0.00..19117.70 rows =219 width=140) (actual time =198.871..266.182 rows =8605 loops=1)
Filter: ((n_valid = 1) AND ((c_zblx)::text = '1003' ::text) AND ((c_dbfy)::text = '0' ::text) AND ((c_gy)::text = '2550' ::text))
Rows Removed by Filter: 332691
-> Materialize (cost=0.00..66.48 rows =5 width=33) (actual time =0.001..0.017 rows =14 loops=8605)
-> Seq Scan on t_zhld_db dbxx (cost=0.00..66.45 rows =5 width=33) (actual time =0.044..0.722 rows =14 loops=1)
Filter: ((n_valid = 1) AND ((c_dbztbh)::text = '1003' ::text) AND (n_state = ANY ( '{1,2,3}' :: integer [])))
Rows Removed by Filter: 1297
-> Materialize (cost=17099.76..17117.46 rows =708 width=32) (actual time =0.006..4.890 rows =4303 loops=8605)
-> HashAggregate (cost=17099.76..17106.84 rows =708 width=32) (actual time =44.011..54.924 rows =8605 loops=1)
Group Key : t_zhld_zbajxx.c_ajbh
-> Bitmap Heap Scan on t_zhld_zbajxx (cost=163.36..17097.99 rows =708 width=32) (actual time =5.218..30.278 rows =8605 loops=1)
Recheck Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003' ::text))
Filter: ((c_gy)::text = '2550' ::text)
Rows Removed by Filter: 21849
Heap Blocks: exact=960
-> Bitmap Index Scan on i_tzhldzbajxx_zblx_dbzt (cost=0.00..163.19 rows =5876 width=0) (actual time =5.011..5.011 rows =30458 loops=1)
Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003' ::text))
Planning time : 1.258 ms
Execution time : 88958.029 ms
|
执行计划解读:
1:第27->21行,通过索引i_tzhldzbajxx_zblx_dbzt过滤表t_zhld_zbajxx的数据,然后根据过滤条件(c_gy)::text = '2550'::text过滤最终返回8605条数据
2:第17->15行,根据条件过滤t_zhld_db表的数据,最终返回了14条数据
3:第20->19行,对表t_zhld_zbajxx做group by的操作
4:第13->11行,全表扫描t_zhld_ajdbxx 最终返回了8605条数据
5:第08行,根据t_zhld_ajdbxx返回的8605条结果集作为驱动表和t_zhld_db的结果集(14条)做嵌套循环,t_zhld_db的结果集被循环了8605次。然后过滤掉了其中的111865条记录,那么最终将得到(8605*14-111865) = 8605
6:第07->05行,根据第08和18行返回的结果集最终做了Nested Loop Semi Join,第18行的4303条结果集被循环了8605次,(4303*8605-37018710)=8605
7: 第04->02行,对最终的8605条记录进行排序
8:第01行,limit最终获取15条记录
整个执行计划中耗时最长的地方在05行Nested Loop Semi Join,actual time=277.794..88932.662, 表db_zxzhld.t_zhld_db dbxx和db_zxzhld.t_zhld_ajdbxx均是全表扫描
2.2具体优化步骤
查看索引页并没有索引,创建c_ajbh,c_dbbh等逻辑外键的索引
1
2
3
4
5
6
7
8
9
10
11
|
drop index if exists I_T_ZHLD_AJDBXX_AJBH;
create index I_T_ZHLD_AJDBXX_AJBH on T_ZHLD_AJDBXX (c_ajbh);
commit ;
drop index if exists I_T_ZHLD_AJDBXX_DBBH;
create index I_T_ZHLD_AJDBXX_DBBH on T_ZHLD_AJDBXX (c_dbbh);
commit ;
|
创建d_larq,c_ajbh的排序索引:
1
2
3
4
5
6
7
8
9
|
drop index if exists I_T_ZHLD_AJDBXX_m6; create index I_T_ZHLD_AJDBXX_m6 on T_ZHLD_AJDBXX (c_zblx,c_dbfy,c_gy,d_larq asc ,c_ajbh asc );
commit ;
drop index if exists I_T_ZHLD_ZBAJXX_h3 ;
create index I_T_ZHLD_ZBAJXX_h3 on db_zxzhld.t_zhld_zbajxx (n_dbzt,c_zblx,c_gy,c_gy);
commit ;
|
创建索引后执行计划有了改变,原来的dbaj表和dbxx表先做nestedloop变成了zbaj和dbaj表先做了nestedloop join,总的cost也从36328.68降到了12802.87,
执行计划
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
Limit (cost=12802.87..12802.87 rows =1 width=107) (actual time =4263.598..4263.648 rows =15 loops=1)
-> Sort (cost=12802.87..12802.87 rows =1 width=107) (actual time =4263.592..4263.609 rows =15 loops=1)
Sort Key : dbaj.d_larq, dbaj.c_ajbh
Sort Method: top -N heapsort Memory: 27kB
-> Nested Loop (cost=2516.05..12802.86 rows =1 width=107) (actual time =74.240..4239.723 rows =8605 loops=1)
Join Filter: (dbaj.c_dbbh = dbxx.c_bh)
Rows Removed by Join Filter: 111865
-> Nested Loop (cost=2516.05..12736.34 rows =1 width=140) (actual time =74.083..327.974 rows =8605 loops=1)
-> HashAggregate (cost=2515.62..2522.76 rows =714 width=32) (actual time =74.025..90.185 rows =8605 loops=1)
Group Key : ( "ANY_subquery" .c_ajbh)::text
-> Subquery Scan on "ANY_subquery" (cost=2499.56..2513.84 rows =714 width=32) (actual time =28.782..59.823 rows =8605 loops=1)
-> HashAggregate (cost=2499.56..2506.70 rows =714 width=32) (actual time =28.778..39.968 rows =8605 loops=1)
Group Key : zbaj.c_ajbh
-> Index Scan using i_t_zhld_zbajxx_h3 on t_zhld_zbajxx zbaj (cost=0.42..2497.77 rows =715 width=32) (actual time =0.062..15.104 rows =8605 loops=1)
Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003' ::text) AND ((c_gy)::text = '2550' ::text))
-> Index Scan using i_t_zhld_ajdbxx_ajbh on t_zhld_ajdbxx dbaj (cost=0.42..14.29 rows =1 width=140) (actual time =0.015..0.021 rows =1 loops=8605)
Index Cond: ((c_ajbh)::text = ( "ANY_subquery" .c_ajbh)::text)
Filter: (((c_zblx)::text = '1003' ::text) AND ((c_dbfy)::text = '0' ::text) AND ((c_gy)::text = '2550' ::text))
Rows Removed by Filter: 1
-> Seq Scan on t_zhld_db dbxx (cost=0.00..66.45 rows =5 width=33) (actual time =0.015..0.430 rows =14 loops=8605)
Filter: ((n_valid = 1) AND ((c_dbztbh)::text = '1003' ::text) AND (n_state = ANY ( '{1,2,3}' :: integer [])))
Rows Removed by Filter: 1298
Planning time : 1.075 ms
Execution time : 4263.803 ms
|
执行的时间还是要4s左右仍然不满足需求,并且没有使用上I_T_ZHLD_AJDBXX_m6这个索引。
2.3等价改写SQL(1)
等价改写:将排序条件加入db_zxzhld.t_zhld_ajdbxx让其先排序,再和t_zhld_db表连接。
修改后sql:
1
2
3
4
5
6
7
8
9
|
Select dbaj.c_ajbh, dbaj.c_ah, dbaj.c_cbfy, dbaj.c_cbrxm, dbaj.d_larq, dbaj.d_jarq, dbaj.n_dbjg, dbaj.c_yqly from ( select * from db_zxzhld.t_zhld_db where n_valid=1 and n_state in (1,2,3) and c_dbztbh= '1003' )dbxx
join ( select * from db_zxzhld.t_zhld_ajdbxx where n_valid=1 and c_zblx= '1003'
and c_dbfy= '0' and c_gy = '2550' and
c_ajbh in ( select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx where n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc , c_ajbh asc )dbajon dbxx.c_bh = dbaj.c_dbbh
limit 15 offset 0
|
再次查看执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
Limit (cost=3223.92..3231.97 rows =1 width=107) (actual time =127.291..127.536 rows =15 loops=1)
-> Nested Loop (cost=3223.92..3231.97 rows =1 width=107) (actual time =127.285..127.496 rows =15 loops=1)
-> Sort (cost=3223.64..3223.65 rows =1 width=140) (actual time =127.210..127.225 rows =15 loops=1)
Sort Key : t_zhld_ajdbxx.d_larq, t_zhld_ajdbxx.c_ajbh
Sort Method: quicksort Memory: 2618kB
-> Hash Semi Join (cost=2523.19..3223.63 rows =1 width=140) (actual time =55.913..107.265 rows =8605 loops=1)
Hash Cond: ((t_zhld_ajdbxx.c_ajbh)::text = (t_zhld_zbajxx.c_ajbh)::text)
-> Index Scan using i_t_zhld_ajdbxx_m6 on t_zhld_ajdbxx (cost=0.42..700.28 rows =219 width=140) (actual time =0.065..22.005 rows =8605 loops=1)
Index Cond: (((c_zblx)::text = '1003' ::text) AND ((c_dbfy)::text = '0' ::text) AND ((c_gy)::text = '2550' ::text))
-> Hash (cost=2513.84..2513.84 rows =714 width=32) (actual time =55.802..55.802 rows =8605 loops=1)
Buckets: 16384 (originally 1024) Batches: 1 (originally 1) Memory Usage: 675kB
-> HashAggregate (cost=2499.56..2506.70 rows =714 width=32) (actual time =30.530..43.275 rows =8605 loops=1)
Group Key : t_zhld_zbajxx.c_ajbh
-> Index Scan using i_t_zhld_zbajxx_h3 on t_zhld_zbajxx (cost=0.42..2497.77 rows =715 width=32) (actual time =0.043..15.552 rows =8605 loops=1)
Index Cond: ((n_dbzt = 1) AND ((c_zblx)::text = '1003' ::text) AND ((c_gy)::text = '2550' ::text))
-> Index Scan using t_zhld_db_pkey on t_zhld_db (cost=0.28..8.30 rows =1 width=33) (actual time =0.009..0.011 rows =1 loops=15)
Index Cond: (c_bh = t_zhld_ajdbxx.c_dbbh)
Filter: (((c_dbztbh)::text = '1003' ::text) AND (n_state = ANY ( '{1,2,3}' :: integer [])))
Planning time : 1.154 ms
Execution time : 127.734 ms
|
这一次可以看出,ajdbxx和zbajxx表做了hash semi join 消除了nestedloop,cost降到了3231.97。并且使用上了i_t_zhld_ajdbxx_m6子查询中in的结果集有一万多条数据。
继续尝试使用exists等价改写in,看能否有更好的结果
2.4等价改写SQL(2)
等价改写:将in替换为exists:
1
2
3
4
5
|
select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqlyfrom ( select c_bh from db_zxzhld.t_zhld_db where n_state in (1,2,3) and c_dbztbh= '1003' )dbxx
join ( select c_ajbh, c_ah, c_cbfy, c_cbrxm, d_larq, d_jarq, n_dbjg, c_yqly,c_dbbh from db_zxzhld.t_zhld_ajdbxx ajdbxxwhere c_zblx= '1003'
and c_dbfy= '0' and c_gy = '2550' and
exists ( select distinct c_ajbh from db_zxzhld.t_zhld_zbajxx zbajxx where ajdbxx.c_ajbh = zbajxx.c_ajbh and n_dbzt = 1 and c_zblx = '1003' and c_gy = '2550' ) order by d_larq asc , c_ajbh asc )dbajon dbxx.c_bh = dbaj.c_dbbh
limit 15 offset 0
|
再次查看执行计划:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
Limit (cost=1.12..2547.17 rows =1 width=107) (actual time =0.140..0.727 rows =15 loops=1)
-> Nested Loop (cost=1.12..2547.17 rows =1 width=107) (actual time =0.136..0.689 rows =15 loops=1)
-> Nested Loop Semi Join (cost=0.85..2538.84 rows =1 width=140) (actual time =0.115..0.493 rows =15 loops=1)
-> Index Scan using i_t_zhld_ajdbxx_m6 on t_zhld_ajdbxx t2 (cost=0.42..700.28 rows =219 width=140) (actual time =0.076..0.127 rows =15 loops=1)
Index Cond: (((c_zblx)::text = '1003' ::text) AND ((c_dbfy)::text = '0' ::text) AND ((c_gy)::text = '2550' ::text))
-> Index Scan using i_t_zhld_zbajxx_c_ajbh on t_zhld_zbajxx t3 (cost=0.42..8.40 rows =1 width=32) (actual time =0.019..0.019 rows =1 loops=15)
Index Cond: ((c_ajbh)::text = (t2.c_ajbh)::text)
Filter: (((c_zblx)::text = '1003' ::text) AND ((c_gy)::text = '2550' ::text) AND (n_dbzt = 1))
-> Index Scan using t_zhld_db_pkey on t_zhld_db (cost=0.28..8.30 rows =1 width=33) (actual time =0.007..0.008 rows =1 loops=15)
Index Cond: (c_bh = t2.c_dbbh)
Filter: (((c_dbztbh)::text = '1003' ::text) AND (n_state = ANY ( '{1,2,3}' :: integer [])))
Planning time : 1.268 ms
Execution time : 0.859 ms
|
可以看出使用exist效果更好,最终cost 2547.17
(1).少了t_zhld_zbajxx表的group by操作:Sort Key: t_zhld_ajdbxx.d_larq, t_zhld_ajdbxx.c_ajbh。(这一步是因为使用了索引中的排序)
(2).少了分组的操作:Group Key: t_zhld_zbajxx.c_ajbh。
第(2)为什么这个查询消除了t_zhld_zbajxx表的group by操作呢?
原因是exists替换了distinct的功能,一旦满足条件则立刻返回。所以使用exists的时候子查询可以直接去掉distinct。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/qxianx/article/details/88997709