题意:给你若干个平行于坐标轴的,长度大于0的线段,且任意两个线段没有公共点,不会重合覆盖。问有多少个交点。
析:题意很明确,可是并不好做,可以先把平行与x轴和y轴的分开,然后把平行y轴的按y坐标从小到大进行排序,然后我们可以枚举每一个平行x轴的线段,
我们可以把平行于x轴的线段当做扫描线,只不过有了一个范围,每次要高效的求出相交的线段数目,可以用一个优先队列来维护平行y轴的线段的上坐标,
如果在该平行于x轴的范围就给相应的横坐标加1,这样就很容易想到是用树状数组来维护,然后每次求出最左边和最右边,相减即可,但是由于数据范围太大,
所以我们考虑离散化横坐标。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 200000 + 10;
const int mod = 1000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
struct Node{
int s, e, pos;
Node(){ }
Node(int ss, int ee, int p) : s(ss), e(ee), pos(p) { }
};
bool cmp1(const Node &lhs, const Node &rhs){ return lhs.s < rhs.s; }
bool cmp2(const Node &lhs, const Node &rhs){ return lhs.pos < rhs.pos; } vector<Node> row, col;
vector<int> all; struct node{
int id, val;
node(int i, int v) : id(i), val(v) { }
bool operator < (const node &p) const{
return val > p.val;
}
}; int sum[maxn<<2]; int lowbit(int x){ return -x&x; }
void add(int x, int val){
while(x <= n){
sum[x] += val;
x += lowbit(x);
}
} int getSum(int x){
int ans = 0;
while(x){
ans += sum[x];
x -= lowbit(x);
}
return ans;
} int main(){
int T; cin >> T;
while(T--){
scanf("%d", &n);
row.clear(); col.clear(); all.clear();
for(int i = 0; i < n; ++i){
int x1, x2, y1, y2;
scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
if(x1 == x2){
if(y1 > y2) swap(y1, y2);
col.push_back(Node(y1, y2, x1));
}
else{
if(x1 > x2) swap(x1, x2);
row.push_back(Node(x1, x2, y1));
}
all.push_back(x1);
all.push_back(x2);
}
sort(all.begin(), all.end());
all.erase(unique(all.begin(), all.end()), all.end());
sort(col.begin(), col.end(), cmp1);
sort(row.begin(), row.end(), cmp2);
memset(sum, 0, sizeof sum);
n <<= 1;
LL ans = 0;
int cnt = 0;
priority_queue<node> pq;
for(int i = 0; i < row.size(); ++i){
while(cnt < col.size() && row[i].pos >= col[cnt].s){
int id = lower_bound(all.begin(), all.end(), col[cnt].pos) - all.begin() + 1;
pq.push(node(id, col[cnt++].e));
add(id, 1);
}
while(!pq.empty() && row[i].pos > pq.top().val){
add(pq.top().id, -1);
pq.pop();
}
int l = lower_bound(all.begin(), all.end(), row[i].s) - all.begin() + 1;
int r = lower_bound(all.begin(), all.end(), row[i].e) - all.begin() + 1;
ans += getSum(r) - getSum(l-1);
}
printf("%lld\n", ans);
}
return 0;
}