在调试时,如何打印Tensorflow中可训练的所有变量(列表格式)?

时间:2022-01-07 20:46:27

While debugging, how to print all variables (which is in list format) who are trainable in Tensorflow?

在调试时,如何打印Tensorflow中可训练的所有变量(列表格式)?

For instance,

例如,

    tvars = tf.trainable_variables()

I want to check all the variables in tvars (which is list type).

我想检查tvars中的所有变量(列表类型)。

I've already tried the below code which returns error,

我已经尝试过以下代码返回错误,

    myvars = session.run([tvars])
    print(myvars)

2 个解决方案

#1


10  

Since tf.trainable_variables() returns a list of tf.Variable objects, you should be able to pass its result straight to Session.run():

由于tf.trainable_variables()返回tf.Variable对象的列表,因此您应该能够将其结果直接传递给Session.run():

tvars = tf.trainable_variables()
tvars_vals = sess.run(tvars)

for var, val in zip(tvars, tvars_vals):
    print(var.name, val)  # Prints the name of the variable alongside its value.

#2


3  

To print the complete list of all all variables or nodes of a tensor-flow graph, you may try this:

要打印张量流图的所有变量或节点的完整列表,您可以尝试这样做:

[n.name for n in tf.get_default_graph().as_graph_def().node]

I copied this from here.

我从这里复制了这个。

#1


10  

Since tf.trainable_variables() returns a list of tf.Variable objects, you should be able to pass its result straight to Session.run():

由于tf.trainable_variables()返回tf.Variable对象的列表,因此您应该能够将其结果直接传递给Session.run():

tvars = tf.trainable_variables()
tvars_vals = sess.run(tvars)

for var, val in zip(tvars, tvars_vals):
    print(var.name, val)  # Prints the name of the variable alongside its value.

#2


3  

To print the complete list of all all variables or nodes of a tensor-flow graph, you may try this:

要打印张量流图的所有变量或节点的完整列表,您可以尝试这样做:

[n.name for n in tf.get_default_graph().as_graph_def().node]

I copied this from here.

我从这里复制了这个。