题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951
题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢卡斯定理处理大组合数,取模用中国剩余定理合并;
好想难写的感觉(其实也不难写?);
关于中国剩余定理,可以看这篇博客:https://www.cnblogs.com/MashiroSky/p/5918158.html
第一次写中国剩余定理合并模数,还有一点好不容易理解的地方,写在注释里。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,g,p=,t[]={,,,},r[],fac[][];
ll pw(ll a,int b,int mod)
{
// a%=mod;//可有可无
ll ret=;
for(;b;b>>=,(a*=a)%=mod)
if(b&) (ret*=a)%=mod;
return ret;
}
ll C(int n,int m,int k)
{
if(n<m)return ;
return (fac[k][n]*pw(fac[k][m]*fac[k][n-m],t[k]-,t[k]))%t[k];
}
ll Lucas(ll n,ll m,int k)
{
if(m==)return ;//!
return (C(n%t[k],m%t[k],k)*Lucas(n/t[k],m/t[k],k))%t[k];
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==){x=; y=; return;}
exgcd(b,a%b,x,y);
ll t=x; x=y; y=t-a/b*y;
}
int CRT()
{
ll M=t[],R=r[],x,y;
for(int i=;i<;i++)
{
exgcd(M,t[i],x,y);
x=((r[i]-R)%t[i]*x%t[i]+t[i])%t[i];//%t[i]!(CRT取通解方法) //不能是R-r[i]!因为求到的x对于r[i]-R来说是正的,否则需要取一下负
R+=M*x;
M*=t[i];
}
return R;
}
int main()
{
scanf("%lld%lld",&n,&g);
if(g==p)//!!!
{
printf(""); return ;
}
for(int i=;i<;i++)
{
fac[i][]=;
for(int j=;j<=t[i];j++)
fac[i][j]=(fac[i][j-]*j)%t[i];
}
for(int j=;j<;j++)
for(int i=;i*i<=n;i++)//
if(n%i==)
{
(r[j]+=Lucas(n,i,j))%=t[j];
if(i*i!=n) (r[j]+=Lucas(n,n/i,j))%=t[j];
}
int ans=CRT();
printf("%lld",pw(g,ans,p));
return ;
}