【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=1951
【思路】
一道优(e)秀(xin)的数论题。
首先我们要求的是(G^sigma{ C(n,n/i),i|n })%P,即G^M %P,根据费马小定理G^(P-1) ≡1(mod P),我们要求的就是G^(M%(P-1)) %P。
考虑C(n,i)%(P-1),由于n i P都比较大所以不好求组合数。发现P-1可以分解质因数为2,3,4679,35617,将C(n,i)对每一个质因子取模,会得到一个形为x≡ ai(mod pi)的模线性方程组,可以用中国剩余定理确定x。对于C(n,i)%p,此时p比较小,我们可以用lucas定理求解。
总的来说就是先用O(sqrt(n))的时间枚举约数,然后用lucas定理求出不同模数下的ai,最后联立方程组,中国剩余定理解。
注意当(G,P)!=1的时候费马小定理不成立,此时答案为0。
关于lucas的写法,a^p-2 %p是a在模p下的逆,因为a^(p-2) *a=a^(p-1),由费马小定理得a^(p-1) %p=1,因此p必须满足为质数才能使用这种方法。
【定理】
1— 欧拉定理
当a与p互质时,a^phi(p) mod p=1
费马小定理即欧拉定理在p为质数时的特例, a(p-1) ≡1 mod p
2— Lucas定理
C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)
【代码】
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long LL;
const int N = ;
const LL mod[]={,,,,}; LL fac[][N],a[],n,G; void gcd(LL a,LL b,LL &x,LL& y) {
if(!b) { x=;y=; }
else gcd(b,a%b,y,x) , y-=x*(a/b);
}
LL pow(LL x,LL p,LL MOD) {
LL ans=;
while(p) {
if(p&) ans=(ans*x)%MOD;
x=(x*x)%MOD; p>>=;
}
return ans;
}
LL C(LL n,LL m,int x) {
if(n<m) return ;
return (fac[x][n]*pow(fac[x][n-m]*fac[x][m],mod[x]-,mod[x]))%mod[x];
}
LL lucas(LL n,LL m,int x) {
if(!m) return ;
return lucas(n/mod[x],m/mod[x],x)*C(n%mod[x],m%mod[x],x)%mod[x];
}
LL china() {
LL M=,d,x,y,ans=;
for(int i=;i<;i++) M*=mod[i];
for(int i=;i<;i++) {
d=M/mod[i];
gcd(d,mod[i],x,y);
ans=(ans+d*x*a[i])%M;
}
while(ans<=) ans+=M;
ans=(ans+M)%M;
return ans;
}
void get_fac() {
for(int i=;i<;i++) {
fac[i][]=;
for(int j=;j<=mod[i];j++)
fac[i][j]=(fac[i][j-]*j)%mod[i];
}
}
int main() {
get_fac();
scanf("%lld%lld",&n,&G);
G%=mod[];
if(!G) { puts(""); return ; }
for(int i=;i*i<=n;i++) if(n%i==) {
LL tmp=n/i;
for(int j=;j<;j++) {
a[j]=(a[j]+lucas(n,tmp,j))%mod[j];
if(tmp!=i) a[j]=(a[j]+lucas(n,i,j))%mod[j];
}
}
printf("%lld",pow(G,china(),mod[])); return ;
}