I have an input file where every value is stored as a string. It is inside a csv file with each entry inside double quotes.
我有一个输入文件,其中每个值都存储为一个字符串。它位于一个csv文件中,每个条目都在双引号内。
Example file:
示例文件:
"column1","column2", "column3", "column4", "column5", "column6"
"AM", "07", "1", "SD", "SD", "CR"
"AM", "08", "1,2,3", "PR,SD,SD", "PR,SD,SD", "PR,SD,SD"
"AM", "01", "2", "SD", "SD", "SD"
There are only six columns. What options do I need to enter to pandas read_csv to read this correctly?
只有六列。我需要输入哪些选项来pandas read_csv才能正确读取?
I currently am trying:
我目前正在尝试:
import pandas as pd
df = pd.read_csv(file, quotechar='"')
but this gives me the error message: CParserError: Error tokenizing data. C error: Expected 6 fields in line 3, saw 14
但这给了我错误消息:CParserError:错误标记数据。 C错误:第3行预计6个字段,见14
Which obviously means that it is ignoring the '"' and parsing every comma as a field. However, for line 3, columns 3 through 6 should be strings with commas in them. ("1,2,3", "PR,SD,SD", "PR,SD,SD", "PR,SD,SD")
这显然意味着它忽略了'''并将每个逗号解析为一个字段。但是,对于第3行,第3列到第6列应该是带逗号的字符串。(“1,2,3”,“PR,SD ,SD“,”PR,SD,SD“,”PR,SD,SD“)
How do I get pandas.read_csv to parse this correctly?
如何让pandas.read_csv正确解析?
Thanks.
谢谢。
1 个解决方案
#1
8
This will work. It falls back to the python parser (as you have non-regular separators, e.g. they are comma and sometimes space). If you only have commas it would use the c-parser and be much faster.
这会奏效。它回退到python解析器(因为你有非常规的分隔符,例如它们是逗号,有时是空格)。如果你只有逗号,它将使用c-parser并且速度更快。
In [1]: import csv
In [2]: !cat test.csv
"column1","column2", "column3", "column4", "column5", "column6"
"AM", "07", "1", "SD", "SD", "CR"
"AM", "08", "1,2,3", "PR,SD,SD", "PR,SD,SD", "PR,SD,SD"
"AM", "01", "2", "SD", "SD", "SD"
In [3]: pd.read_csv('test.csv',sep=',\s+',quoting=csv.QUOTE_ALL)
pandas/io/parsers.py:637: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators; you can avoid this warning by specifying engine='python'.
ParserWarning)
Out[3]:
"column1","column2" "column3" "column4" "column5" "column6"
"AM" "07" "1" "SD" "SD" "CR"
"AM" "08" "1,2,3" "PR,SD,SD" "PR,SD,SD" "PR,SD,SD"
"AM" "01" "2" "SD" "SD" "SD"
#1
8
This will work. It falls back to the python parser (as you have non-regular separators, e.g. they are comma and sometimes space). If you only have commas it would use the c-parser and be much faster.
这会奏效。它回退到python解析器(因为你有非常规的分隔符,例如它们是逗号,有时是空格)。如果你只有逗号,它将使用c-parser并且速度更快。
In [1]: import csv
In [2]: !cat test.csv
"column1","column2", "column3", "column4", "column5", "column6"
"AM", "07", "1", "SD", "SD", "CR"
"AM", "08", "1,2,3", "PR,SD,SD", "PR,SD,SD", "PR,SD,SD"
"AM", "01", "2", "SD", "SD", "SD"
In [3]: pd.read_csv('test.csv',sep=',\s+',quoting=csv.QUOTE_ALL)
pandas/io/parsers.py:637: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators; you can avoid this warning by specifying engine='python'.
ParserWarning)
Out[3]:
"column1","column2" "column3" "column4" "column5" "column6"
"AM" "07" "1" "SD" "SD" "CR"
"AM" "08" "1,2,3" "PR,SD,SD" "PR,SD,SD" "PR,SD,SD"
"AM" "01" "2" "SD" "SD" "SD"