I have a very large CSV File with 100 columns. In order to illustrate my problem I will use a very basic example.
我有一个很大的CSV文件,有100列。为了说明我的问题,我将用一个非常基本的例子。
Let's suppose that we have a CSV file.
假设我们有一个CSV文件。
in value d f 0 975 f01 5 1 976 F 4 2 977 d4 1 3 978 B6 0 4 979 2C 0
I want to select a specific columns.
我想选择一个特定的列。
import pandas
data = pandas.read_csv("ThisFile.csv")
In order to select the first 2 columns I used
为了选择我使用的前两列
data.ix[:,:2]
In order to select different columns like the 2nd and the 4th. What should I do?
为了选择不同的列,比如2和4。我应该做什么?
There is another way to solve this problem by re-writing the CSV file. But it's huge file; So I am avoiding this way.
还有一种方法可以通过重写CSV文件来解决这个问题。但它巨大的文件;所以我避免这样。
2 个解决方案
#1
12
This selects the second and fourth columns (since Python uses 0-based indexing):
这将选择第二和第四列(因为Python使用基于0的索引):
In [272]: df.iloc[:,(1,3)]
Out[272]:
value f
0 975 5
1 976 4
2 977 1
3 978 0
4 979 0
[5 rows x 2 columns]
df.ix
can select by location or label. df.iloc
always selects by location. When indexing by location use df.iloc
to signal your intention more explicitly. It is also a bit faster since Pandas does not have to check if your index is using labels.
df。ix可以按位置或标签进行选择。df。iloc总是按位置选择。当按位置索引时使用df。iloc可以更明确地表明你的意图。它也快了一点,因为熊猫不需要检查你的索引是否使用标签。
Another possibility is to use the usecols
parameter:
另一种可能是使用usecols参数:
data = pandas.read_csv("ThisFile.csv", usecols=[1,3])
This will load only the second and fourth columns into the data
DataFrame.
这将只加载数据DataFrame中的第二和第四列。
#2
5
If you rather select column by name, you can use
如果您愿意按名称选择列,可以使用
data[['value','f']]
value f
0 975 5
1 976 4
2 977 1
3 978 0
4 979 0
#1
12
This selects the second and fourth columns (since Python uses 0-based indexing):
这将选择第二和第四列(因为Python使用基于0的索引):
In [272]: df.iloc[:,(1,3)]
Out[272]:
value f
0 975 5
1 976 4
2 977 1
3 978 0
4 979 0
[5 rows x 2 columns]
df.ix
can select by location or label. df.iloc
always selects by location. When indexing by location use df.iloc
to signal your intention more explicitly. It is also a bit faster since Pandas does not have to check if your index is using labels.
df。ix可以按位置或标签进行选择。df。iloc总是按位置选择。当按位置索引时使用df。iloc可以更明确地表明你的意图。它也快了一点,因为熊猫不需要检查你的索引是否使用标签。
Another possibility is to use the usecols
parameter:
另一种可能是使用usecols参数:
data = pandas.read_csv("ThisFile.csv", usecols=[1,3])
This will load only the second and fourth columns into the data
DataFrame.
这将只加载数据DataFrame中的第二和第四列。
#2
5
If you rather select column by name, you can use
如果您愿意按名称选择列,可以使用
data[['value','f']]
value f
0 975 5
1 976 4
2 977 1
3 978 0
4 979 0