I have a csv file which isn't coming in correctly with pandas.read_csv
when I filter the columns with usecols
and use multiple indexes.
我有一个csv文件不能正确地输入到熊猫。当我使用usecols过滤列并使用多个索引时,读取_csv。
import pandas as pd
csv = r"""dummy,date,loc,x
bar,20090101,a,1
bar,20090102,a,3
bar,20090103,a,5
bar,20090101,b,1
bar,20090102,b,3
bar,20090103,b,5"""
f = open('foo.csv', 'w')
f.write(csv)
f.close()
df1 = pd.read_csv('foo.csv',
header=0,
names=["dummy", "date", "loc", "x"],
index_col=["date", "loc"],
usecols=["dummy", "date", "loc", "x"],
parse_dates=["date"])
print df1
# Ignore the dummy columns
df2 = pd.read_csv('foo.csv',
index_col=["date", "loc"],
usecols=["date", "loc", "x"], # <----------- Changed
parse_dates=["date"],
header=0,
names=["dummy", "date", "loc", "x"])
print df2
I expect that df1 and df2 should be the same except for the missing dummy column, but the columns come in mislabeled. Also the date is getting parsed as a date.
我期望df1和df2应该是相同的,除了缺少假列之外,但是列的标签是错误的。这个日期也被解析为一个日期。
In [118]: %run test.py
dummy x
date loc
2009-01-01 a bar 1
2009-01-02 a bar 3
2009-01-03 a bar 5
2009-01-01 b bar 1
2009-01-02 b bar 3
2009-01-03 b bar 5
date
date loc
a 1 20090101
3 20090102
5 20090103
b 1 20090101
3 20090102
5 20090103
Using column numbers instead of names give me the same problem. I can workaround the issue by dropping the dummy column after the read_csv step, but I'm trying to understand what is going wrong. I'm using pandas 0.10.1.
使用列号而不是名称也给了我同样的问题。我可以通过在read_csv步骤之后删除假列来解决这个问题,但是我正在尝试理解哪里出错了。我用熊猫0.10.1。
edit: fixed bad header usage.
编辑:修正头的错误用法。
4 个解决方案
#1
49
The answer by @chip completely misses the point of two keyword arguments.
@chip的答案完全忽略了两个关键字参数的要点。
- names is only necessary when there is no header and you want to specify other arguments using column names rather than integer indices.
- 只有在没有头时才需要名称,并且您希望使用列名而不是整数索引来指定其他参数。
- usecols is supposed to provide a filter before reading the whole DataFrame into memory; if used properly, there should never be a need to delete columns after reading.
- usecols应该在将整个数据aframe读入内存之前提供一个过滤器;如果使用得当,应该永远不需要在阅读后删除列。
This solution corrects those oddities:
这个解决方案纠正了那些奇怪的地方:
import pandas as pd
from StringIO import StringIO
csv = r"""dummy,date,loc,x
bar,20090101,a,1
bar,20090102,a,3
bar,20090103,a,5
bar,20090101,b,1
bar,20090102,b,3
bar,20090103,b,5"""
df = pd.read_csv(StringIO(csv),
header=0,
index_col=["date", "loc"],
usecols=["date", "loc", "x"],
parse_dates=["date"])
Which gives us:
这给我们:
x
date loc
2009-01-01 a 1
2009-01-02 a 3
2009-01-03 a 5
2009-01-01 b 1
2009-01-02 b 3
2009-01-03 b 5
#2
13
This code achieves what you want --- also its weird and certainly buggy:
这段代码实现了你想要的——当然,它也很奇怪,而且有问题:
I observed that it works when:
我发现当:
a) you specify the index_col
rel. to the number of columns you really use -- so its three columns in this example, not four (you drop dummy
and start counting from then onwards)
a)您将index_col rel.指定到实际使用的列数——因此在本例中它有三列,而不是四列(您删除假列,然后开始计数)
b) same for parse_dates
parse_dates b)相同
c) not so for usecols
;) for obvious reasons
c) usecols不是这样;)原因显而易见
d) here I adapted the names
to mirror this behaviour
我在这里修改了名字以反映这种行为。
import pandas as pd
from StringIO import StringIO
csv = """dummy,date,loc,x
bar,20090101,a,1
bar,20090102,a,3
bar,20090103,a,5
bar,20090101,b,1
bar,20090102,b,3
bar,20090103,b,5
"""
df = pd.read_csv(StringIO(csv),
index_col=[0,1],
usecols=[1,2,3],
parse_dates=[0],
header=0,
names=["date", "loc", "", "x"])
print df
which prints
的打印
x
date loc
2009-01-01 a 1
2009-01-02 a 3
2009-01-03 a 5
2009-01-01 b 1
2009-01-02 b 3
2009-01-03 b 5
#3
8
If your csv file contains extra data, columns can be deleted from the DataFrame after import.
如果您的csv文件包含额外的数据,则可以在导入后从DataFrame中删除列。
import pandas as pd
from StringIO import StringIO
csv = r"""dummy,date,loc,x
bar,20090101,a,1
bar,20090102,a,3
bar,20090103,a,5
bar,20090101,b,1
bar,20090102,b,3
bar,20090103,b,5"""
df = pd.read_csv(StringIO(csv),
index_col=["date", "loc"],
usecols=["dummy", "date", "loc", "x"],
parse_dates=["date"],
header=0,
names=["dummy", "date", "loc", "x"])
del df['dummy']
Which gives us:
这给我们:
x
date loc
2009-01-01 a 1
2009-01-02 a 3
2009-01-03 a 5
2009-01-01 b 1
2009-01-02 b 3
2009-01-03 b 5
#4
-3
import csv first and use csv.DictReader its easy to process...
先导入csv并使用csv。它很容易处理……
#1
49
The answer by @chip completely misses the point of two keyword arguments.
@chip的答案完全忽略了两个关键字参数的要点。
- names is only necessary when there is no header and you want to specify other arguments using column names rather than integer indices.
- 只有在没有头时才需要名称,并且您希望使用列名而不是整数索引来指定其他参数。
- usecols is supposed to provide a filter before reading the whole DataFrame into memory; if used properly, there should never be a need to delete columns after reading.
- usecols应该在将整个数据aframe读入内存之前提供一个过滤器;如果使用得当,应该永远不需要在阅读后删除列。
This solution corrects those oddities:
这个解决方案纠正了那些奇怪的地方:
import pandas as pd
from StringIO import StringIO
csv = r"""dummy,date,loc,x
bar,20090101,a,1
bar,20090102,a,3
bar,20090103,a,5
bar,20090101,b,1
bar,20090102,b,3
bar,20090103,b,5"""
df = pd.read_csv(StringIO(csv),
header=0,
index_col=["date", "loc"],
usecols=["date", "loc", "x"],
parse_dates=["date"])
Which gives us:
这给我们:
x
date loc
2009-01-01 a 1
2009-01-02 a 3
2009-01-03 a 5
2009-01-01 b 1
2009-01-02 b 3
2009-01-03 b 5
#2
13
This code achieves what you want --- also its weird and certainly buggy:
这段代码实现了你想要的——当然,它也很奇怪,而且有问题:
I observed that it works when:
我发现当:
a) you specify the index_col
rel. to the number of columns you really use -- so its three columns in this example, not four (you drop dummy
and start counting from then onwards)
a)您将index_col rel.指定到实际使用的列数——因此在本例中它有三列,而不是四列(您删除假列,然后开始计数)
b) same for parse_dates
parse_dates b)相同
c) not so for usecols
;) for obvious reasons
c) usecols不是这样;)原因显而易见
d) here I adapted the names
to mirror this behaviour
我在这里修改了名字以反映这种行为。
import pandas as pd
from StringIO import StringIO
csv = """dummy,date,loc,x
bar,20090101,a,1
bar,20090102,a,3
bar,20090103,a,5
bar,20090101,b,1
bar,20090102,b,3
bar,20090103,b,5
"""
df = pd.read_csv(StringIO(csv),
index_col=[0,1],
usecols=[1,2,3],
parse_dates=[0],
header=0,
names=["date", "loc", "", "x"])
print df
which prints
的打印
x
date loc
2009-01-01 a 1
2009-01-02 a 3
2009-01-03 a 5
2009-01-01 b 1
2009-01-02 b 3
2009-01-03 b 5
#3
8
If your csv file contains extra data, columns can be deleted from the DataFrame after import.
如果您的csv文件包含额外的数据,则可以在导入后从DataFrame中删除列。
import pandas as pd
from StringIO import StringIO
csv = r"""dummy,date,loc,x
bar,20090101,a,1
bar,20090102,a,3
bar,20090103,a,5
bar,20090101,b,1
bar,20090102,b,3
bar,20090103,b,5"""
df = pd.read_csv(StringIO(csv),
index_col=["date", "loc"],
usecols=["dummy", "date", "loc", "x"],
parse_dates=["date"],
header=0,
names=["dummy", "date", "loc", "x"])
del df['dummy']
Which gives us:
这给我们:
x
date loc
2009-01-01 a 1
2009-01-02 a 3
2009-01-03 a 5
2009-01-01 b 1
2009-01-02 b 3
2009-01-03 b 5
#4
-3
import csv first and use csv.DictReader its easy to process...
先导入csv并使用csv。它很容易处理……