I'm new to Python and I'm trying to analyse this CSV file. It has a lot of different countries (as an example below).
我是Python的新手,我正在尝试分析这个CSV文件。它有很多不同的国家(以下为例)。
country iso2 iso3 iso_numeric g_whoregion year e_pop_num e_inc_100k e_inc_100k_lo
Afghanistan AF AFG 4 EMR 2000 20093756 190 123
American Samoa AS ASM 16 WPR 2003 59117 5.8 5 6.7 3 3 4
Gambia GM GMB 270 AFR 2010 1692149 178 115 254 3000 1900 4300
I want to try and obtain only specific data, so only specific countries and only specific columns (like "e_pop_numb"). How would I go about doing that?
我想尝试只获取特定数据,因此只有特定国家/地区和特定列(例如“e_pop_numb”)。我该怎么做呢?
The only basic code I have is:
我唯一的基本代码是:
import csv
import itertools
f = csv.reader(open('TB_burden_countries_2018-03-06.csv'))
for row in itertools.islice(f, 0, 10):
print (row)
Which just lets me choose specific rows I want, but not necessarily the country I want to look at, or the specific columns I want.
这只是让我选择我想要的特定行,但不一定是我想看的国家,或者我想要的特定列。
IF you can help me or provide me a guide so I can do my own learning, I'd very much appreciate that! Thank you.
如果你可以帮助我或给我一个指导,这样我就可以自己学习,我非常感谢!谢谢。
3 个解决方案
#1
0
I recommend you to use pandas python library. Please follow the article as here below there is a snippet code to iluminate your thoughts.
我建议你使用pandas python库。请按照下面的文章,有一个片段代码来阐明您的想法。
import pandas as pd
df1=pd.read_csv("https://pythonhow.com/wp-content/uploads/2016/01/Income_data.csv")
df2.loc["Alaska":"Arkansas","2005":"2007"]
source of this information: https://pythonhow.com/accessing-dataframe-columns-rows-and-cells/
此信息的来源:https://pythonhow.com/accessing-dataframe-columns-rows-and-cells/
#2
0
Pandas will probably be the easiest way. https://pandas.pydata.org/pandas-docs/stable/
熊猫可能是最简单的方法。 https://pandas.pydata.org/pandas-docs/stable/
To get it run
让它运行
pip install pandas
Then read the csv into a dataframe and filter it
然后将csv读入数据帧并对其进行过滤
import pandas as pd
df = pd.read_csv(‘TB_burden_countries_2018-03-06.csv’)
df = df[df[‘country’] == ‘Gambia’]
print(df)
#3
0
with open('file') as f: fields = f.readline().split("\t") print fields
使用open('file')作为f:fields = f.readline()。split(“\ t”)打印字段
If you supply more details about what you want to see, the answer would differ.
如果您提供有关您想要查看的内容的更多详细信息,答案会有所不同。
#1
0
I recommend you to use pandas python library. Please follow the article as here below there is a snippet code to iluminate your thoughts.
我建议你使用pandas python库。请按照下面的文章,有一个片段代码来阐明您的想法。
import pandas as pd
df1=pd.read_csv("https://pythonhow.com/wp-content/uploads/2016/01/Income_data.csv")
df2.loc["Alaska":"Arkansas","2005":"2007"]
source of this information: https://pythonhow.com/accessing-dataframe-columns-rows-and-cells/
此信息的来源:https://pythonhow.com/accessing-dataframe-columns-rows-and-cells/
#2
0
Pandas will probably be the easiest way. https://pandas.pydata.org/pandas-docs/stable/
熊猫可能是最简单的方法。 https://pandas.pydata.org/pandas-docs/stable/
To get it run
让它运行
pip install pandas
Then read the csv into a dataframe and filter it
然后将csv读入数据帧并对其进行过滤
import pandas as pd
df = pd.read_csv(‘TB_burden_countries_2018-03-06.csv’)
df = df[df[‘country’] == ‘Gambia’]
print(df)
#3
0
with open('file') as f: fields = f.readline().split("\t") print fields
使用open('file')作为f:fields = f.readline()。split(“\ t”)打印字段
If you supply more details about what you want to see, the answer would differ.
如果您提供有关您想要查看的内容的更多详细信息,答案会有所不同。