使用TensorFlow的卷积神经网络识别手写数字(1)-预处理篇

时间:2020-12-13 19:41:29

 

功能:

  将文件夹下的20*20像素黑白图片,根据重心位置绘制到28*28图片上,然后保存。经过预处理的图片有利于数字的准确识别。参见MNIST对图片的要求。

  

  此处可下载已处理好的图片:

  https://files.cnblogs.com/files/hatemath/20-pixel-numbers.zip

  https://files.cnblogs.com/files/hatemath/28-pixel-numbers.zip

 # encoding: utf-8
import os from PIL import Image
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.cm as cm srcDir = '20-pixel-numbers'
dstDir = '28-pixel-numbers' #显示图片
def showImg(image):
plt.imshow(image,cmap=cm.binary)
plt.show() #按比例调整图片大小
def resizeImage(image,width=None,height=None,inter=cv2.INTER_AREA): #获取图像尺寸
(h,w) = image.shape[:2]
if width is None and height is None:
return image #高度算缩放比例 if(w > h):
newsize = (width,round(h / (w/width)))
else:
newsize = (round(w/ (h/height)), height) #print(newsize) # 缩放图像
newimage = cv2.resize(image, newsize, interpolation=inter)
return newimage #创建新的黑色图片
def createBianryImage(bg=(0,0,0), width=28, height=28): channels = 1 image = np.zeros((width,height,channels),np.uint8)#生成一个空灰度图像
#cv2.rectangle(image,(0,0),(width,height),bg,1, -1) return image.reshape(width, height) #两个不同大小的图片合并
def mergeImage(bg, fg, x, y):
bgH, bgW = bg.shape[:2]
fgH, fgW = fg.shape[:2] for i in range(fgH):
for j in range(fgW):
if(y+i < bgH and x+j < bgW):
#print('xx', y+i, x+j)
bg[y+i, x+j] = fg[i,j] # 这里可以处理每个像素点 return bg # 求像素重心。传入二值图像,其中白色点算重量,黑色点为空
def getBarycentre(image): h, w = image.shape[:2] sumWeightW = 0
sumWeightH = 0 count = 0 for i in range(h):
for j in range(w):
if(image[i,j] > 128):
sumWeightW += j
sumWeightH += i
count += 1 if(count == 0):
count = 1 print('getBarycentre: ', round(sumWeightW/count), round(sumWeightH/count) )
return (round(sumWeightW/count), round(sumWeightH/count)) def getFileList(strDir, strType='.png'):
lstSrcFiles = [] files = os.listdir(strDir)
for file in files:
if os.path.splitext(file)[1] == strType:
lstSrcFiles.append(file) return lstSrcFiles # 读取指定目录下的图片文件,图片为黑白格式,长、宽的最大值为20像素。
lstSrcFiles = getFileList(srcDir)
print (lstSrcFiles) for file in lstSrcFiles:
binary = cv2.imread(srcDir + '/' + file, cv2.IMREAD_GRAYSCALE) # 求像素重心
bcW, bcH = getBarycentre(binary) # 叠加到28x28的黑色图片上
xOffset = round(28/2 - bcW)
yOffset = round(28/2 - bcH) print('offset', xOffset, yOffset) # 另存为
cv2.imwrite(dstDir + '/' + file,
mergeImage(createBianryImage(), binary, xOffset, yOffset))
#binary)