from PIL import Image
import numpy as np
import tensorflow as tf
import time
bShowAccuracy = True
# 加载手写图片
def loadHandWritingImage(strFilePath):
im = Image.open(strFilePath, 'r')
ndarrayImg = np.array(im.convert("L"), dtype='float')
return ndarrayImg
# 最大最小值归一化
def normalizeImage(ndarrayImg, maxVal = 255, minVal = 0):
ndarrayImg = (ndarrayImg - minVal) / (maxVal - minVal)
return ndarrayImg
# 1)构造自己的手写图片集合,用加载的已训练好的模型识别
print('构造待识别数据...')
# 待识别的手写图片,文件名是0...39
fileList = range(0, 39+1)
ndarrayImgs = np.zeros((len(fileList), 784)) # x行784列
for index in range(len(fileList)):
# 加载图片
ndarrayImg = loadHandWritingImage('28-pixel-numbers/' + str(index) + '.png')
# 归一化
normalizeImage(ndarrayImg)
# 转为1x784的数组
ndarrayImg = ndarrayImg.reshape((1, 784))
# 加入到测试集中
ndarrayImgs[index] = ndarrayImg
##import sys
##sys.exit()
# 构建测试样本的实际值集合,用于计算正确率
# 真实结果,用于测试准确度。40行10列
ndarrayLabels = np.eye(10, k=0, dtype='float')
ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels))
ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels))
# 2)下面开始CNN相关
print('定义Tensor...')
#定义变量和计算公式
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 3)创建saver对象并加载模型
print('加载已训练好的CNN模型...')
saver = tf.train.Saver()
saver.restore(sess, "saved_model/cnn_handwrite_number.ckpt")
# 测试耗时
print('进行预测:')
start = time.time()
# 4)执行预测
output = sess.run(y_conv, feed_dict={x: ndarrayImgs, keep_prob:1.0})
end = time.time()
print('预测数字为:\n', output.argmax(axis=1)) # axis:0表示按列,1表示按行
print('实际数字为:\n', ndarrayLabels.argmax(axis=1))
if(bShowAccuracy):
accu = accuracy.eval(feed_dict={x: ndarrayImgs, y_: ndarrayLabels, keep_prob: 1.0})
print('识别HateMath苍劲有力的手写数据%d个, 准确率为 %.2f%%, 每个耗时%.5f秒' %
(len(ndarrayImgs), accu*100, (end-start)/len(ndarrayImgs)))
# todo
# 图像分割的准确度