本文是Python通过TensorFlow卷积神经网络实现猫狗识别的姊妹篇,是加载上一篇训练好的模型,进行猫狗识别
本文逻辑:
- 我从网上下载了十几张猫和狗的图片,用于检验我们训练好的模型。
- 处理我们下载的图片
- 加载模型
- 将图片输入模型进行检验
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
#coding=utf-8
import tensorflow as tf
from PIL import Image
import matplotlib.pyplot as plt
import input_data
import numpy as np
import model
import os
#从指定目录中选取一张图片
def get_one_image(train):
files = os.listdir(train)
n = len (files)
ind = np.random.randint( 0 ,n)
img_dir = os.path.join(train,files[ind])
image = Image. open (img_dir)
plt.imshow(image)
plt.show()
image = image.resize([ 208 , 208 ])
image = np.array(image)
return image
def evaluate_one_image():
#存放的是我从百度下载的猫狗图片路径
train = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/'
image_array = get_one_image(train)
with tf.Graph().as_default():
BATCH_SIZE = 1 # 因为只读取一副图片 所以batch 设置为1
N_CLASSES = 2 # 2个输出神经元,[1,0] 或者 [0,1]猫和狗的概率
# 转化图片格式
image = tf.cast(image_array, tf.float32)
# 图片标准化
image = tf.image.per_image_standardization(image)
# 图片原来是三维的 [208, 208, 3] 重新定义图片形状 改为一个4D 四维的 tensor
image = tf.reshape(image, [ 1 , 208 , 208 , 3 ])
logit = model.inference(image, BATCH_SIZE, N_CLASSES)
# 因为 inference 的返回没有用激活函数,所以在这里对结果用softmax 激活
logit = tf.nn.softmax(logit)
# 用最原始的输入数据的方式向模型输入数据 placeholder
x = tf.placeholder(tf.float32, shape = [ 208 , 208 , 3 ])
# 我门存放模型的路径
logs_train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/saveNet/'
# 定义saver
saver = tf.train.Saver()
with tf.Session() as sess:
print ( "从指定的路径中加载模型。。。。" )
# 将模型加载到sess 中
ckpt = tf.train.get_checkpoint_state(logs_train_dir)
if ckpt and ckpt.model_checkpoint_path:
global_step = ckpt.model_checkpoint_path.split( '/' )[ - 1 ].split( '-' )[ - 1 ]
saver.restore(sess, ckpt.model_checkpoint_path)
print ( '模型加载成功, 训练的步数为 %s' % global_step)
else :
print ( '模型加载失败,,,文件没有找到' )
# 将图片输入到模型计算
prediction = sess.run(logit, feed_dict = {x: image_array})
# 获取输出结果中最大概率的索引
max_index = np.argmax(prediction)
if max_index = = 0 :
print ( '猫的概率 %.6f' % prediction[:, 0 ])
else :
print ( '狗的概率 %.6f' % prediction[:, 1 ])
# 测试
evaluate_one_image()
|
/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/ 存放的是我从百度下载的猫狗图片
执行结果:
因为从testimg 中选取图片是随机的,所以每次执行的结果不同
从指定的路径中加载模型。。。。
模型加载成功, 训练的步数为 11999
狗的概率 0.964047
[Finished in 6.8s]
代码地址:https://github.com/527515025/My-TensorFlow-tutorials/blob/master/猫狗识别/evaluateCatOrDog.py
欢迎star。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对服务器之家的支持。如果你想了解更多相关内容请查看下面相关链接
原文链接:https://blog.csdn.net/u012373815/article/details/79222121