题解
Dinic求最小割
题目其实就是求最小的代价使得每个纵轴被分成两部分
最小割!!!
我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径
但是题目要求\(|f(x,y)-f(x’,y’)| ≤D\)
不能直接跑最小割
考虑如何限制
首先,\(|f(x,y)-f(x’,y’)| ≤D\)是相互的
所以只要考虑 \(f(x,y)-f(x',y')\leq D\)
限制想一想看代码就明白了
代码就很简洁了
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 80000, inf = 2147483647;
struct node {
int to, nxt, w;
}g[2000000];
int last[N], gl = 1;
void add(int x, int y, int z) {
g[++gl] = (node) {y, last[x], z};
last[x] = gl;
g[++gl] = (node) {x, last[y], 0};
last[y] = gl;
}
queue<int> q;
int dep[N], s, t, cur[N];
bool bfs() {
memset(dep, 0, sizeof(dep));
dep[s] = 1;
q.push(s);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = last[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (!dep[v] && g[i].w) {
dep[v] = dep[u]+1;
q.push(v);
}
}
}
return dep[t] == 0 ? 0 : 1;
}
int dfs(int u, int d) {
if (u == t) return d;
for (int &i = cur[u]; i; i = g[i].nxt) {
int v = g[i].to;
if (dep[v] == dep[u]+1 && g[i].w) {
int di = dfs(v, min(d, g[i].w));
if (di) {
g[i].w -= di;
g[i^1].w += di;
return di;
}
}
}
return 0;
}
int Dinic() {
int ans = 0;
while (bfs()) {
for (int i = 1; i <= t; i++) cur[i] = last[i];
while (int d = dfs(s, inf)) ans += d;
}
return ans;
}
int a[50][50][50], id[50][50][50];
int fx[] = {0, 1, -1, 0};
int fy[] = {1, 0, 0, -1};
int main() {
int p, q, r, d, tot = 0;
read(p), read(q), read(r), read(d);
for (int i = 1; i <= r; i++)
for (int j = 1; j <= p; j++)
for (int k = 1; k <= q; k++)
read(a[i][j][k]), id[i][j][k] = ++tot;
for (int j = 1; j <= p; j++)
for (int k = 1; k <= q; k++)
id[r+1][j][k] = ++tot;
s = tot+1, t = s+1;
for (int i = 1; i <= p; i++)
for (int j = 1; j <= q; j++)
add(s, id[1][i][j], inf), add(id[r+1][i][j], t, inf);
for (int k = 1; k <= r; k++)
for (int i = 1; i <= p; i++)
for (int j = 1; j <= q; j++)
add(id[k][i][j], id[k+1][i][j], a[k][i][j]);
for (int k = d+1; k <= r+1; k++)
for (int i = 1; i <= p; i++)
for (int j = 1; j <= q; j++) {
for (int z = 0; z < 4; z++) {
int x = i + fx[z], y = j + fy[z];
if (x < 1 || y < 1 || x > p || y > q) continue;
add(id[k][i][j], id[k-d][x][y], inf);
}
}
printf("%d\n", Dinic());
return 0;
}