在以前的u-boot中,使用NandFlash烧写命令nand write.yaffs命令来专门烧写yaffs2文件系统,那时候虽然u-boot在烧写yaffs2文件系统的时候虽然会出错,但是也不至于像u-boot-2015-07这个版本那么变态-----源码上直接不支持nand write.yaffs命令。也不知道是yaffs2这种文件系统被废弃了还是使用了更好的文件系统代替了,反正最新版的u-boot已经在源码上对yaffs2文件系统不支持了(这个结论是对比老版本u-boot和新版本u-boot的common/cmd_nand.c说的,如果您知道原因,还请在下方留言帮一下我)。
虽然官方的代码不支持了,但是在研究一段时间后也让新版的u-boot支持yaffs2文件系统烧写了,方法主要是对比老版本u-boot的cmd_nand.c和新版本的cmd_nand.c文件,这部分原理性的东西我理解不透彻就不误人子弟了。以下主要贴出修改后的文件:
common/cmd_nand.c中: /* * Driver for NAND support, Rick Bronson * borrowed heavily from: * (c) 1999 Machine Vision Holdings, Inc. * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> * * Ported 'dynenv' to 'nand env.oob' command * (C) 2010 Nanometrics, Inc. * 'dynenv' -- Dynamic environment offset in NAND OOB * (C) Copyright 2006-2007 OpenMoko, Inc. * Added 16-bit nand support * (C) 2004 Texas Instruments * * Copyright 2010, 2012 Freescale Semiconductor * The portions of this file whose copyright is held by Freescale and which * are not considered a derived work of GPL v2-only code may be distributed * and/or modified under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. */ #include <common.h> #include <linux/mtd/mtd.h> #include <command.h> #include <watchdog.h> #include <malloc.h> #include <asm/byteorder.h> #include <jffs2/jffs2.h> #include <nand.h> #if defined(CONFIG_CMD_MTDPARTS) /* partition handling routines */ int mtdparts_init(void); int id_parse(const char *id, const char **ret_id, u8 *dev_type, u8 *dev_num); int find_dev_and_part(const char *id, struct mtd_device **dev, u8 *part_num, struct part_info **part); #endif static int nand_dump(nand_info_t *nand, ulong off, int only_oob, int repeat) { int i; u_char *datbuf, *oobbuf, *p; static loff_t last; int ret = 0; if (repeat) off = last + nand->writesize; last = off; datbuf = memalign(ARCH_DMA_MINALIGN, nand->writesize); if (!datbuf) { puts("No memory for page buffer\n"); return 1; } oobbuf = memalign(ARCH_DMA_MINALIGN, nand->oobsize); if (!oobbuf) { puts("No memory for page buffer\n"); ret = 1; goto free_dat; } off &= ~(nand->writesize - 1); loff_t addr = (loff_t) off; struct mtd_oob_ops ops; memset(&ops, 0, sizeof(ops)); ops.datbuf = datbuf; ops.oobbuf = oobbuf; ops.len = nand->writesize; ops.ooblen = nand->oobsize; ops.mode = MTD_OPS_RAW; i = mtd_read_oob(nand, addr, &ops); if (i < 0) { printf("Error (%d) reading page %08lx\n", i, off); ret = 1; goto free_all; } printf("Page %08lx dump:\n", off); if (!only_oob) { i = nand->writesize >> 4; p = datbuf; while (i--) { printf("\t%02x %02x %02x %02x %02x %02x %02x %02x" " %02x %02x %02x %02x %02x %02x %02x %02x\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); p += 16; } } puts("OOB:\n"); i = nand->oobsize >> 3; p = oobbuf; while (i--) { printf("\t%02x %02x %02x %02x %02x %02x %02x %02x\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); p += 8; } free_all: free(oobbuf); free_dat: free(datbuf); return ret; } /* ------------------------------------------------------------------------- */ static int set_dev(int dev) { if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE || !nand_info[dev].name) { puts("No such device\n"); return -1; } if (nand_curr_device == dev) return 0; printf("Device %d: %s", dev, nand_info[dev].name); puts("... is now current device\n"); nand_curr_device = dev; #ifdef CONFIG_SYS_NAND_SELECT_DEVICE board_nand_select_device(nand_info[dev].priv, dev); #endif return 0; } #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK static void print_status(ulong start, ulong end, ulong erasesize, int status) { /* * Micron NAND flash (e.g. MT29F4G08ABADAH4) BLOCK LOCK READ STATUS is * not the same as others. Instead of bit 1 being lock, it is * #lock_tight. To make the driver support either format, ignore bit 1 * and use only bit 0 and bit 2. */ printf("%08lx - %08lx: %08lx blocks %s%s%s\n", start, end - 1, (end - start) / erasesize, ((status & NAND_LOCK_STATUS_TIGHT) ? "TIGHT " : ""), (!(status & NAND_LOCK_STATUS_UNLOCK) ? "LOCK " : ""), ((status & NAND_LOCK_STATUS_UNLOCK) ? "UNLOCK " : "")); } static void do_nand_status(nand_info_t *nand) { ulong block_start = 0; ulong off; int last_status = -1; struct nand_chip *nand_chip = nand->priv; /* check the WP bit */ nand_chip->cmdfunc(nand, NAND_CMD_STATUS, -1, -1); printf("device is %swrite protected\n", (nand_chip->read_byte(nand) & 0x80 ? "NOT " : "")); for (off = 0; off < nand->size; off += nand->erasesize) { int s = nand_get_lock_status(nand, off); /* print message only if status has changed */ if (s != last_status && off != 0) { print_status(block_start, off, nand->erasesize, last_status); block_start = off; } last_status = s; } /* Print the last block info */ print_status(block_start, off, nand->erasesize, last_status); } #endif #ifdef CONFIG_ENV_OFFSET_OOB unsigned long nand_env_oob_offset; int do_nand_env_oob(cmd_tbl_t *cmdtp, int argc, char *const argv[]) { int ret; uint32_t oob_buf[ENV_OFFSET_SIZE/sizeof(uint32_t)]; nand_info_t *nand = &nand_info[0]; char *cmd = argv[1]; if (CONFIG_SYS_MAX_NAND_DEVICE == 0 || !nand->name) { puts("no devices available\n"); return 1; } set_dev(0); if (!strcmp(cmd, "get")) { ret = get_nand_env_oob(nand, &nand_env_oob_offset); if (ret) return 1; printf("0x%08lx\n", nand_env_oob_offset); } else if (!strcmp(cmd, "set")) { loff_t addr; loff_t maxsize; struct mtd_oob_ops ops; int idx = 0; if (argc < 3) goto usage; /* We don't care about size, or maxsize. */ if (mtd_arg_off(argv[2], &idx, &addr, &maxsize, &maxsize, MTD_DEV_TYPE_NAND, nand_info[idx].size)) { puts("Offset or partition name expected\n"); return 1; } if (set_dev(idx)) { puts("Offset or partition name expected\n"); return 1; } if (idx != 0) { puts("Partition not on first NAND device\n"); return 1; } if (nand->oobavail < ENV_OFFSET_SIZE) { printf("Insufficient available OOB bytes:\n" "%d OOB bytes available but %d required for " "env.oob support\n", nand->oobavail, ENV_OFFSET_SIZE); return 1; } if ((addr & (nand->erasesize - 1)) != 0) { printf("Environment offset must be block-aligned\n"); return 1; } ops.datbuf = NULL; ops.mode = MTD_OOB_AUTO; ops.ooboffs = 0; ops.ooblen = ENV_OFFSET_SIZE; ops.oobbuf = (void *) oob_buf; oob_buf[0] = ENV_OOB_MARKER; oob_buf[1] = addr / nand->erasesize; ret = nand->write_oob(nand, ENV_OFFSET_SIZE, &ops); if (ret) { printf("Error writing OOB block 0\n"); return ret; } ret = get_nand_env_oob(nand, &nand_env_oob_offset); if (ret) { printf("Error reading env offset in OOB\n"); return ret; } if (addr != nand_env_oob_offset) { printf("Verification of env offset in OOB failed: " "0x%08llx expected but got 0x%08lx\n", (unsigned long long)addr, nand_env_oob_offset); return 1; } } else { goto usage; } return ret; usage: return CMD_RET_USAGE; } #endif static void nand_print_and_set_info(int idx) { nand_info_t *nand = &nand_info[idx]; struct nand_chip *chip = nand->priv; printf("Device %d: ", idx); if (chip->numchips > 1) printf("%dx ", chip->numchips); printf("%s, sector size %u KiB\n", nand->name, nand->erasesize >> 10); printf(" Page size %8d b\n", nand->writesize); printf(" OOB size %8d b\n", nand->oobsize); printf(" Erase size %8d b\n", nand->erasesize); printf(" subpagesize %8d b\n", chip->subpagesize); printf(" options 0x%8x\n", chip->options); printf(" bbt options 0x%8x\n", chip->bbt_options); /* Set geometry info */ setenv_hex("nand_writesize", nand->writesize); setenv_hex("nand_oobsize", nand->oobsize); setenv_hex("nand_erasesize", nand->erasesize); } static int raw_access(nand_info_t *nand, ulong addr, loff_t off, ulong count, int read) { int ret = 0; while (count--) { /* Raw access */ mtd_oob_ops_t ops = { .datbuf = (u8 *)addr, .oobbuf = ((u8 *)addr) + nand->writesize, .len = nand->writesize, .ooblen = nand->oobsize, .mode = MTD_OPS_RAW }; if (read) { ret = mtd_read_oob(nand, off, &ops); } else { ret = mtd_write_oob(nand, off, &ops); if (!ret) ret = nand_verify_page_oob(nand, &ops, off); } if (ret) { printf("%s: error at offset %llx, ret %d\n", __func__, (long long)off, ret); break; } addr += nand->writesize + nand->oobsize; off += nand->writesize; } return ret; } /* Adjust a chip/partition size down for bad blocks so we don't * read/write past the end of a chip/partition by accident. */ static void adjust_size_for_badblocks(loff_t *size, loff_t offset, int dev) { /* We grab the nand info object here fresh because this is usually * called after arg_off_size() which can change the value of dev. */ nand_info_t *nand = &nand_info[dev]; loff_t maxoffset = offset + *size; int badblocks = 0; /* count badblocks in NAND from offset to offset + size */ for (; offset < maxoffset; offset += nand->erasesize) { if (nand_block_isbad(nand, offset)) badblocks++; } /* adjust size if any bad blocks found */ if (badblocks) { *size -= badblocks * nand->erasesize; printf("size adjusted to 0x%llx (%d bad blocks)\n", (unsigned long long)*size, badblocks); } } static int do_nand(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int i, ret = 0; ulong addr; loff_t off, size, maxsize; char *cmd, *s; nand_info_t *nand; #ifdef CONFIG_SYS_NAND_QUIET int quiet = CONFIG_SYS_NAND_QUIET; #else int quiet = 0; #endif const char *quiet_str = getenv("quiet"); int dev = nand_curr_device; int repeat = flag & CMD_FLAG_REPEAT; /* at least two arguments please */ if (argc < 2) goto usage; if (quiet_str) quiet = simple_strtoul(quiet_str, NULL, 0) != 0; cmd = argv[1]; /* Only "dump" is repeatable. */ if (repeat && strcmp(cmd, "dump")) return 0; if (strcmp(cmd, "info") == 0) { putc('\n'); for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) { if (nand_info[i].name) nand_print_and_set_info(i); } return 0; } if (strcmp(cmd, "device") == 0) { if (argc < 3) { putc('\n'); if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE) puts("no devices available\n"); else nand_print_and_set_info(dev); return 0; } dev = (int)simple_strtoul(argv[2], NULL, 10); set_dev(dev); return 0; } #ifdef CONFIG_ENV_OFFSET_OOB /* this command operates only on the first nand device */ if (strcmp(cmd, "env.oob") == 0) return do_nand_env_oob(cmdtp, argc - 1, argv + 1); #endif /* The following commands operate on the current device, unless * overridden by a partition specifier. Note that if somehow the * current device is invalid, it will have to be changed to a valid * one before these commands can run, even if a partition specifier * for another device is to be used. */ if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE || !nand_info[dev].name) { puts("\nno devices available\n"); return 1; } nand = &nand_info[dev]; if (strcmp(cmd, "bad") == 0) { printf("\nDevice %d bad blocks:\n", dev); for (off = 0; off < nand->size; off += nand->erasesize) if (nand_block_isbad(nand, off)) printf(" %08llx\n", (unsigned long long)off); return 0; } /* * Syntax is: * 0 1 2 3 4 * nand erase [clean] [off size] */ if (strncmp(cmd, "erase", 5) == 0 || strncmp(cmd, "scrub", 5) == 0) { nand_erase_options_t opts; /* "clean" at index 2 means request to write cleanmarker */ int clean = argc > 2 && !strcmp("clean", argv[2]); int scrub_yes = argc > 2 && !strcmp("-y", argv[2]); int o = (clean || scrub_yes) ? 3 : 2; int scrub = !strncmp(cmd, "scrub", 5); int spread = 0; int args = 2; const char *scrub_warn = "Warning: " "scrub option will erase all factory set bad blocks!\n" " " "There is no reliable way to recover them.\n" " " "Use this command only for testing purposes if you\n" " " "are sure of what you are doing!\n" "\nReally scrub this NAND flash? <y/N>\n"; if (cmd[5] != 0) { if (!strcmp(&cmd[5], ".spread")) { spread = 1; } else if (!strcmp(&cmd[5], ".part")) { args = 1; } else if (!strcmp(&cmd[5], ".chip")) { args = 0; } else { goto usage; } } /* * Don't allow missing arguments to cause full chip/partition * erases -- easy to do accidentally, e.g. with a misspelled * variable name. */ if (argc != o + args) goto usage; printf("\nNAND %s: ", cmd); /* skip first two or three arguments, look for offset and size */ if (mtd_arg_off_size(argc - o, argv + o, &dev, &off, &size, &maxsize, MTD_DEV_TYPE_NAND, nand_info[dev].size) != 0) return 1; if (set_dev(dev)) return 1; nand = &nand_info[dev]; memset(&opts, 0, sizeof(opts)); opts.offset = off; opts.length = size; opts.jffs2 = clean; opts.quiet = quiet; opts.spread = spread; if (scrub) { if (scrub_yes) { opts.scrub = 1; } else { puts(scrub_warn); if (confirm_yesno()) { opts.scrub = 1; } else { puts("scrub aborted\n"); return 1; } } } ret = nand_erase_opts(nand, &opts); printf("%s\n", ret ? "ERROR" : "OK"); return ret == 0 ? 0 : 1; } if (strncmp(cmd, "dump", 4) == 0) { if (argc < 3) goto usage; off = (int)simple_strtoul(argv[2], NULL, 16); ret = nand_dump(nand, off, !strcmp(&cmd[4], ".oob"), repeat); return ret == 0 ? 1 : 0; } if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) { size_t rwsize; ulong pagecount = 1; int read; int raw = 0; if (argc < 4) goto usage; addr = (ulong)simple_strtoul(argv[2], NULL, 16); read = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */ printf("\nNAND %s: ", read ? "read" : "write"); s = strchr(cmd, '.'); if (s && !strcmp(s, ".raw")) { raw = 1; if (mtd_arg_off(argv[3], &dev, &off, &size, &maxsize, MTD_DEV_TYPE_NAND, nand_info[dev].size)) return 1; if (set_dev(dev)) return 1; nand = &nand_info[dev]; if (argc > 4 && !str2long(argv[4], &pagecount)) { printf("'%s' is not a number\n", argv[4]); return 1; } if (pagecount * nand->writesize > size) { puts("Size exceeds partition or device limit\n"); return -1; } rwsize = pagecount * (nand->writesize + nand->oobsize); } else { if (mtd_arg_off_size(argc - 3, argv + 3, &dev, &off, &size, &maxsize, MTD_DEV_TYPE_NAND, nand_info[dev].size) != 0) return 1; if (set_dev(dev)) return 1; /* size is unspecified */ if (argc < 5) adjust_size_for_badblocks(&size, off, dev); rwsize = size; } nand = &nand_info[dev]; if (!s || !strcmp(s, ".jffs2") || !strcmp(s, ".e") || !strcmp(s, ".i")) { if (read) ret = nand_read_skip_bad(nand, off, &rwsize, NULL, maxsize, (u_char *)addr); else ret = nand_write_skip_bad(nand, off, &rwsize, NULL, maxsize, (u_char *)addr, WITH_WR_VERIFY); #ifdef CONFIG_CMD_NAND_TRIMFFS } else if (!strcmp(s, ".trimffs")) { if (read) { printf("Unknown nand command suffix '%s'\n", s); return 1; } ret = nand_write_skip_bad(nand, off, &rwsize, NULL, maxsize, (u_char *)addr, WITH_DROP_FFS); #endif #ifdef CONFIG_CMD_NAND_YAFFS } else if (!strcmp(s, ".yaffs")) { if (read) { printf("Unknown nand command suffix '%s'.\n", s); return 1; } ret = nand_write_skip_bad(nand, off, &rwsize, NULL, maxsize, (u_char *)addr, WITH_YAFFS_OOB); #endif } else if (!strcmp(s, ".oob")) { /* out-of-band data */ mtd_oob_ops_t ops = { .oobbuf = (u8 *)addr, .ooblen = rwsize, .mode = MTD_OPS_RAW }; if (read) ret = mtd_read_oob(nand, off, &ops); else ret = mtd_write_oob(nand, off, &ops); } else if (raw) { ret = raw_access(nand, addr, off, pagecount, read); } else { printf("Unknown nand command suffix '%s'.\n", s); return 1; } printf(" %zu bytes %s: %s\n", rwsize, read ? "read" : "written", ret ? "ERROR" : "OK"); return ret == 0 ? 0 : 1; } #ifdef CONFIG_CMD_NAND_TORTURE if (strcmp(cmd, "torture") == 0) { if (argc < 3) goto usage; if (!str2off(argv[2], &off)) { puts("Offset is not a valid number\n"); return 1; } printf("\nNAND torture: device %d offset 0x%llx size 0x%x\n", dev, off, nand->erasesize); ret = nand_torture(nand, off); printf(" %s\n", ret ? "Failed" : "Passed"); return ret == 0 ? 0 : 1; } #endif if (strcmp(cmd, "markbad") == 0) { argc -= 2; argv += 2; if (argc <= 0) goto usage; while (argc > 0) { addr = simple_strtoul(*argv, NULL, 16); if (mtd_block_markbad(nand, addr)) { printf("block 0x%08lx NOT marked " "as bad! ERROR %d\n", addr, ret); ret = 1; } else { printf("block 0x%08lx successfully " "marked as bad\n", addr); } --argc; ++argv; } return ret; } if (strcmp(cmd, "biterr") == 0) { /* todo */ return 1; } #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK if (strcmp(cmd, "lock") == 0) { int tight = 0; int status = 0; if (argc == 3) { if (!strcmp("tight", argv[2])) tight = 1; if (!strcmp("status", argv[2])) status = 1; } if (status) { do_nand_status(nand); } else { if (!nand_lock(nand, tight)) { puts("NAND flash successfully locked\n"); } else { puts("Error locking NAND flash\n"); return 1; } } return 0; } if (strncmp(cmd, "unlock", 5) == 0) { int allexcept = 0; s = strchr(cmd, '.'); if (s && !strcmp(s, ".allexcept")) allexcept = 1; if (mtd_arg_off_size(argc - 2, argv + 2, &dev, &off, &size, &maxsize, MTD_DEV_TYPE_NAND, nand_info[dev].size) < 0) return 1; if (set_dev(dev)) return 1; if (!nand_unlock(&nand_info[dev], off, size, allexcept)) { puts("NAND flash successfully unlocked\n"); } else { puts("Error unlocking NAND flash, " "write and erase will probably fail\n"); return 1; } return 0; } #endif usage: return CMD_RET_USAGE; } #ifdef CONFIG_SYS_LONGHELP static char nand_help_text[] = "info - show available NAND devices\n" "nand device [dev] - show or set current device\n" "nand read - addr off|partition size\n" "nand write - addr off|partition size\n" " read/write 'size' bytes starting at offset 'off'\n" " to/from memory address 'addr', skipping bad blocks.\n" "nand read.raw - addr off|partition [count]\n" "nand write.raw - addr off|partition [count]\n" " Use read.raw/write.raw to avoid ECC and access the flash as-is.\n" #ifdef CONFIG_CMD_NAND_TRIMFFS "nand write.trimffs - addr off|partition size\n" " write 'size' bytes starting at offset 'off' from memory address\n" " 'addr', skipping bad blocks and dropping any pages at the end\n" " of eraseblocks that contain only 0xFF\n" #endif #ifdef CONFIG_CMD_NAND_YAFFS "nand write.yaffs - addr off|partition size\n" " write 'size' bytes starting at offset 'off' with yaffs format\n" " from memory address 'addr', skipping bad blocks.\n" #endif "nand erase[.spread] [clean] off size - erase 'size' bytes " "from offset 'off'\n" " With '.spread', erase enough for given file size, otherwise,\n" " 'size' includes skipped bad blocks.\n" "nand erase.part [clean] partition - erase entire mtd partition'\n" "nand erase.chip [clean] - erase entire chip'\n" "nand bad - show bad blocks\n" "nand dump[.oob] off - dump page\n" #ifdef CONFIG_CMD_NAND_TORTURE "nand torture off - torture block at offset\n" #endif "nand scrub [-y] off size | scrub.part partition | scrub.chip\n" " really clean NAND erasing bad blocks (UNSAFE)\n" "nand markbad off [...] - mark bad block(s) at offset (UNSAFE)\n" "nand biterr off - make a bit error at offset (UNSAFE)" #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK "\n" "nand lock [tight] [status]\n" " bring nand to lock state or display locked pages\n" "nand unlock[.allexcept] [offset] [size] - unlock section" #endif #ifdef CONFIG_ENV_OFFSET_OOB "\n" "nand env.oob - environment offset in OOB of block 0 of" " first device.\n" "nand env.oob set off|partition - set enviromnent offset\n" "nand env.oob get - get environment offset" #endif ""; #endif U_BOOT_CMD( nand, CONFIG_SYS_MAXARGS, 1, do_nand, "NAND sub-system", nand_help_text ); static int nand_load_image(cmd_tbl_t *cmdtp, nand_info_t *nand, ulong offset, ulong addr, char *cmd) { int r; char *s; size_t cnt; #if defined(CONFIG_IMAGE_FORMAT_LEGACY) image_header_t *hdr; #endif #if defined(CONFIG_FIT) const void *fit_hdr = NULL; #endif s = strchr(cmd, '.'); if (s != NULL && (strcmp(s, ".jffs2") && strcmp(s, ".e") && strcmp(s, ".i"))) { printf("Unknown nand load suffix '%s'\n", s); bootstage_error(BOOTSTAGE_ID_NAND_SUFFIX); return 1; } printf("\nLoading from %s, offset 0x%lx\n", nand->name, offset); cnt = nand->writesize; r = nand_read_skip_bad(nand, offset, &cnt, NULL, nand->size, (u_char *)addr); if (r) { puts("** Read error\n"); bootstage_error(BOOTSTAGE_ID_NAND_HDR_READ); return 1; } bootstage_mark(BOOTSTAGE_ID_NAND_HDR_READ); switch (genimg_get_format ((void *)addr)) { #if defined(CONFIG_IMAGE_FORMAT_LEGACY) case IMAGE_FORMAT_LEGACY: hdr = (image_header_t *)addr; bootstage_mark(BOOTSTAGE_ID_NAND_TYPE); image_print_contents (hdr); cnt = image_get_image_size (hdr); break; #endif #if defined(CONFIG_FIT) case IMAGE_FORMAT_FIT: fit_hdr = (const void *)addr; puts ("Fit image detected...\n"); cnt = fit_get_size (fit_hdr); break; #endif default: bootstage_error(BOOTSTAGE_ID_NAND_TYPE); puts ("** Unknown image type\n"); return 1; } bootstage_mark(BOOTSTAGE_ID_NAND_TYPE); r = nand_read_skip_bad(nand, offset, &cnt, NULL, nand->size, (u_char *)addr); if (r) { puts("** Read error\n"); bootstage_error(BOOTSTAGE_ID_NAND_READ); return 1; } bootstage_mark(BOOTSTAGE_ID_NAND_READ); #if defined(CONFIG_FIT) /* This cannot be done earlier, we need complete FIT image in RAM first */ if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) { if (!fit_check_format (fit_hdr)) { bootstage_error(BOOTSTAGE_ID_NAND_FIT_READ); puts ("** Bad FIT image format\n"); return 1; } bootstage_mark(BOOTSTAGE_ID_NAND_FIT_READ_OK); fit_print_contents (fit_hdr); } #endif /* Loading ok, update default load address */ load_addr = addr; return bootm_maybe_autostart(cmdtp, cmd); } static int do_nandboot(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { char *boot_device = NULL; int idx; ulong addr, offset = 0; #if defined(CONFIG_CMD_MTDPARTS) struct mtd_device *dev; struct part_info *part; u8 pnum; if (argc >= 2) { char *p = (argc == 2) ? argv[1] : argv[2]; if (!(str2long(p, &addr)) && (mtdparts_init() == 0) && (find_dev_and_part(p, &dev, &pnum, &part) == 0)) { if (dev->id->type != MTD_DEV_TYPE_NAND) { puts("Not a NAND device\n"); return 1; } if (argc > 3) goto usage; if (argc == 3) addr = simple_strtoul(argv[1], NULL, 16); else addr = CONFIG_SYS_LOAD_ADDR; return nand_load_image(cmdtp, &nand_info[dev->id->num], part->offset, addr, argv[0]); } } #endif bootstage_mark(BOOTSTAGE_ID_NAND_PART); switch (argc) { case 1: addr = CONFIG_SYS_LOAD_ADDR; boot_device = getenv("bootdevice"); break; case 2: addr = simple_strtoul(argv[1], NULL, 16); boot_device = getenv("bootdevice"); break; case 3: addr = simple_strtoul(argv[1], NULL, 16); boot_device = argv[2]; break; case 4: addr = simple_strtoul(argv[1], NULL, 16); boot_device = argv[2]; offset = simple_strtoul(argv[3], NULL, 16); break; default: #if defined(CONFIG_CMD_MTDPARTS) usage: #endif bootstage_error(BOOTSTAGE_ID_NAND_SUFFIX); return CMD_RET_USAGE; } bootstage_mark(BOOTSTAGE_ID_NAND_SUFFIX); if (!boot_device) { puts("\n** No boot device **\n"); bootstage_error(BOOTSTAGE_ID_NAND_BOOT_DEVICE); return 1; } bootstage_mark(BOOTSTAGE_ID_NAND_BOOT_DEVICE); idx = simple_strtoul(boot_device, NULL, 16); if (idx < 0 || idx >= CONFIG_SYS_MAX_NAND_DEVICE || !nand_info[idx].name) { printf("\n** Device %d not available\n", idx); bootstage_error(BOOTSTAGE_ID_NAND_AVAILABLE); return 1; } bootstage_mark(BOOTSTAGE_ID_NAND_AVAILABLE); return nand_load_image(cmdtp, &nand_info[idx], offset, addr, argv[0]); } U_BOOT_CMD(nboot, 4, 1, do_nandboot, "boot from NAND device", "[partition] | [[[loadAddr] dev] offset]" ); |
drivers/mtd/nand/nand_util.c文件中:
/* * drivers/mtd/nand/nand_util.c * * Copyright (C) 2006 by Weiss-Electronic GmbH. * All rights reserved. * * @author: Guido Classen <clagix@gmail.com> * @descr: NAND Flash support * @references: borrowed heavily from Linux mtd-utils code: * flash_eraseall.c by Arcom Control System Ltd * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com) * and Thomas Gleixner (tglx@linutronix.de) * * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils * * Copyright 2010 Freescale Semiconductor * * SPDX-License-Identifier: GPL-2.0 */ #include <common.h> #include <command.h> #include <watchdog.h> #include <malloc.h> #include <div64.h> #include <asm/errno.h> #include <linux/mtd/mtd.h> #include <nand.h> #include <jffs2/jffs2.h> typedef struct erase_info erase_info_t; typedef struct mtd_info mtd_info_t; /* support only for native endian JFFS2 */ #define cpu_to_je16(x) (x) #define cpu_to_je32(x) (x) /** * nand_erase_opts: - erase NAND flash with support for various options * (jffs2 formatting) * * @param meminfo NAND device to erase * @param opts options, @see struct nand_erase_options * @return 0 in case of success * * This code is ported from flash_eraseall.c from Linux mtd utils by * Arcom Control System Ltd. */ int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts) { struct jffs2_unknown_node cleanmarker; erase_info_t erase; unsigned long erase_length, erased_length; /* in blocks */ int result; int percent_complete = -1; const char *mtd_device = meminfo->name; struct mtd_oob_ops oob_opts; struct nand_chip *chip = meminfo->priv; if ((opts->offset & (meminfo->erasesize - 1)) != 0) { printf("Attempt to erase non block-aligned data\n"); return -1; } memset(&erase, 0, sizeof(erase)); memset(&oob_opts, 0, sizeof(oob_opts)); erase.mtd = meminfo; erase.len = meminfo->erasesize; erase.addr = opts->offset; erase_length = lldiv(opts->length + meminfo->erasesize - 1, meminfo->erasesize); cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); cleanmarker.totlen = cpu_to_je32(8); /* scrub option allows to erase badblock. To prevent internal * check from erase() method, set block check method to dummy * and disable bad block table while erasing. */ if (opts->scrub) { erase.scrub = opts->scrub; /* * We don't need the bad block table anymore... * after scrub, there are no bad blocks left! */ if (chip->bbt) { kfree(chip->bbt); } chip->bbt = NULL; chip->options &= ~NAND_BBT_SCANNED; } for (erased_length = 0; erased_length < erase_length; erase.addr += meminfo->erasesize) { WATCHDOG_RESET(); if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) { puts("Size of erase exceeds limit\n"); return -EFBIG; } if (!opts->scrub) { int ret = mtd_block_isbad(meminfo, erase.addr); if (ret > 0) { if (!opts->quiet) printf("\rSkipping bad block at " "0x%08llx " " \n", erase.addr); if (!opts->spread) erased_length++; continue; } else if (ret < 0) { printf("\n%s: MTD get bad block failed: %d\n", mtd_device, ret); return -1; } } erased_length++; result = mtd_erase(meminfo, &erase); if (result != 0) { printf("\n%s: MTD Erase failure: %d\n", mtd_device, result); continue; } /* format for JFFS2 ? */ if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) { struct mtd_oob_ops ops; ops.ooblen = 8; ops.datbuf = NULL; ops.oobbuf = (uint8_t *)&cleanmarker; ops.ooboffs = 0; ops.mode = MTD_OPS_AUTO_OOB; result = mtd_write_oob(meminfo, erase.addr, &ops); if (result != 0) { printf("\n%s: MTD writeoob failure: %d\n", mtd_device, result); continue; } } if (!opts->quiet) { unsigned long long n = erased_length * 100ULL; int percent; do_div(n, erase_length); percent = (int)n; /* output progress message only at whole percent * steps to reduce the number of messages printed * on (slow) serial consoles */ if (percent != percent_complete) { percent_complete = percent; printf("\rErasing at 0x%llx -- %3d%% complete.", erase.addr, percent); if (opts->jffs2 && result == 0) printf(" Cleanmarker written at 0x%llx.", erase.addr); } } } if (!opts->quiet) printf("\n"); return 0; } #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK #define NAND_CMD_LOCK_TIGHT 0x2c #define NAND_CMD_LOCK_STATUS 0x7a /****************************************************************************** * Support for locking / unlocking operations of some NAND devices *****************************************************************************/ /** * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT * state * * @param mtd nand mtd instance * @param tight bring device in lock tight mode * * @return 0 on success, -1 in case of error * * The lock / lock-tight command only applies to the whole chip. To get some * parts of the chip lock and others unlocked use the following sequence: * * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin) * - Call nand_unlock() once for each consecutive area to be unlocked * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1) * * If the device is in lock-tight state software can't change the * current active lock/unlock state of all pages. nand_lock() / nand_unlock() * calls will fail. It is only posible to leave lock-tight state by * an hardware signal (low pulse on _WP pin) or by power down. */ int nand_lock(struct mtd_info *mtd, int tight) { int ret = 0; int status; struct nand_chip *chip = mtd->priv; /* select the NAND device */ chip->select_chip(mtd, 0); /* check the Lock Tight Status */ chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0); if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { printf("nand_lock: Device is locked tight!\n"); ret = -1; goto out; } chip->cmdfunc(mtd, (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK), -1, -1); /* call wait ready function */ status = chip->waitfunc(mtd, chip); /* see if device thinks it succeeded */ if (status & 0x01) { ret = -1; } out: /* de-select the NAND device */ chip->select_chip(mtd, -1); return ret; } /** * nand_get_lock_status: - query current lock state from one page of NAND * flash * * @param mtd nand mtd instance * @param offset page address to query (must be page-aligned!) * * @return -1 in case of error * >0 lock status: * bitfield with the following combinations: * NAND_LOCK_STATUS_TIGHT: page in tight state * NAND_LOCK_STATUS_UNLOCK: page unlocked * */ int nand_get_lock_status(struct mtd_info *mtd, loff_t offset) { int ret = 0; int chipnr; int page; struct nand_chip *chip = mtd->priv; /* select the NAND device */ chipnr = (int)(offset >> chip->chip_shift); chip->select_chip(mtd, chipnr); if ((offset & (mtd->writesize - 1)) != 0) { printf("nand_get_lock_status: " "Start address must be beginning of " "nand page!\n"); ret = -1; goto out; } /* check the Lock Status */ page = (int)(offset >> chip->page_shift); chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT | NAND_LOCK_STATUS_UNLOCK); out: /* de-select the NAND device */ chip->select_chip(mtd, -1); return ret; } /** * nand_unlock: - Unlock area of NAND pages * only one consecutive area can be unlocked at one time! * * @param mtd nand mtd instance * @param start start byte address * @param length number of bytes to unlock (must be a multiple of * page size nand->writesize) * @param allexcept if set, unlock everything not selected * * @return 0 on success, -1 in case of error */ int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length, int allexcept) { int ret = 0; int chipnr; int status; int page; struct nand_chip *chip = mtd->priv; debug("nand_unlock%s: start: %08llx, length: %zd!\n", allexcept ? " (allexcept)" : "", start, length); /* select the NAND device */ chipnr = (int)(start >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* check the WP bit */ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) { printf("nand_unlock: Device is write protected!\n"); ret = -1; goto out; } /* check the Lock Tight Status */ page = (int)(start >> chip->page_shift); chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { printf("nand_unlock: Device is locked tight!\n"); ret = -1; goto out; } if ((start & (mtd->erasesize - 1)) != 0) { printf("nand_unlock: Start address must be beginning of " "nand block!\n"); ret = -1; goto out; } if (length == 0 || (length & (mtd->erasesize - 1)) != 0) { printf("nand_unlock: Length must be a multiple of nand block " "size %08x!\n", mtd->erasesize); ret = -1; goto out; } /* * Set length so that the last address is set to the * starting address of the last block */ length -= mtd->erasesize; /* submit address of first page to unlock */ chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); /* submit ADDRESS of LAST page to unlock */ page += (int)(length >> chip->page_shift); /* * Page addresses for unlocking are supposed to be block-aligned. * At least some NAND chips use the low bit to indicate that the * page range should be inverted. */ if (allexcept) page |= 1; chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask); /* call wait ready function */ status = chip->waitfunc(mtd, chip); /* see if device thinks it succeeded */ if (status & 0x01) { /* there was an error */ ret = -1; goto out; } out: /* de-select the NAND device */ chip->select_chip(mtd, -1); return ret; } #endif /** * check_skip_len * * Check if there are any bad blocks, and whether length including bad * blocks fits into device * * @param nand NAND device * @param offset offset in flash * @param length image length * @param used length of flash needed for the requested length * @return 0 if the image fits and there are no bad blocks * 1 if the image fits, but there are bad blocks * -1 if the image does not fit */ static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length, size_t *used) { size_t len_excl_bad = 0; int ret = 0; while (len_excl_bad < length) { size_t block_len, block_off; loff_t block_start; if (offset >= nand->size) return -1; block_start = offset & ~(loff_t)(nand->erasesize - 1); block_off = offset & (nand->erasesize - 1); block_len = nand->erasesize - block_off; if (!nand_block_isbad(nand, block_start)) len_excl_bad += block_len; else ret = 1; offset += block_len; *used += block_len; } /* If the length is not a multiple of block_len, adjust. */ if (len_excl_bad > length) *used -= (len_excl_bad - length); return ret; } #ifdef CONFIG_CMD_NAND_TRIMFFS static size_t drop_ffs(const nand_info_t *nand, const u_char *buf, const size_t *len) { size_t l = *len; ssize_t i; for (i = l - 1; i >= 0; i--) if (buf[i] != 0xFF) break; /* The resulting length must be aligned to the minimum flash I/O size */ l = i + 1; l = (l + nand->writesize - 1) / nand->writesize; l *= nand->writesize; /* * since the input length may be unaligned, prevent access past the end * of the buffer */ return min(l, *len); } #endif /** * nand_verify_page_oob: * * Verify a page of NAND flash, including the OOB. * Reads page of NAND and verifies the contents and OOB against the * values in ops. * * @param nand NAND device * @param ops MTD operations, including data to verify * @param ofs offset in flash * @return 0 in case of success */ int nand_verify_page_oob(nand_info_t *nand, struct mtd_oob_ops *ops, loff_t ofs) { int rval; struct mtd_oob_ops vops; size_t verlen = nand->writesize + nand->oobsize; memcpy(&vops, ops, sizeof(vops)); vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen); if (!vops.datbuf) return -ENOMEM; vops.oobbuf = vops.datbuf + nand->writesize; rval = mtd_read_oob(nand, ofs, &vops); if (!rval) rval = memcmp(ops->datbuf, vops.datbuf, vops.len); if (!rval) rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen); free(vops.datbuf); return rval ? -EIO : 0; } /** * nand_verify: * * Verify a region of NAND flash. * Reads NAND in page-sized chunks and verifies the contents against * the contents of a buffer. The offset into the NAND must be * page-aligned, and the function doesn't handle skipping bad blocks. * * @param nand NAND device * @param ofs offset in flash * @param len buffer length * @param buf buffer to read from * @return 0 in case of success */ int nand_verify(nand_info_t *nand, loff_t ofs, size_t len, u_char *buf) { int rval = 0; size_t verofs; size_t verlen = nand->writesize; uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen); if (!verbuf) return -ENOMEM; /* Read the NAND back in page-size groups to limit malloc size */ for (verofs = ofs; verofs < ofs + len; verofs += verlen, buf += verlen) { verlen = min(nand->writesize, (uint32_t)(ofs + len - verofs)); rval = nand_read(nand, verofs, &verlen, verbuf); if (!rval || (rval == -EUCLEAN)) rval = memcmp(buf, verbuf, verlen); if (rval) break; } free(verbuf); return rval ? -EIO : 0; } /** * nand_write_skip_bad: * * Write image to NAND flash. * Blocks that are marked bad are skipped and the is written to the next * block instead as long as the image is short enough to fit even after * skipping the bad blocks. Due to bad blocks we may not be able to * perform the requested write. In the case where the write would * extend beyond the end of the NAND device, both length and actual (if * not NULL) are set to 0. In the case where the write would extend * beyond the limit we are passed, length is set to 0 and actual is set * to the required length. * * @param nand NAND device * @param offset offset in flash * @param length buffer length * @param actual set to size required to write length worth of * buffer or 0 on error, if not NULL * @param lim maximum size that actual may be in order to not * exceed the buffer * @param buffer buffer to read from * @param flags flags modifying the behaviour of the write to NAND * @return 0 in case of success */ int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, size_t *actual, loff_t lim, u_char *buffer, int flags) { int rval = 0, blocksize; size_t left_to_write = *length; size_t used_for_write = 0; u_char *p_buffer = buffer; int need_skip; if (actual) *actual = 0; #ifdef CONFIG_CMD_NAND_YAFFS if (flags & WITH_YAFFS_OOB) { if (flags & ~WITH_YAFFS_OOB) return -EINVAL; int pages; pages = nand->erasesize / nand->writesize; blocksize = (pages * nand->oobsize) + nand->erasesize; if (*length % (nand->writesize + nand->oobsize)) { printf("Attempt to write incomplete page" " in yaffs mode\n"); return -EINVAL; } } else #endif { blocksize = nand->erasesize; } /* * nand_write() handles unaligned, partial page writes. * * We allow length to be unaligned, for convenience in * using the $filesize variable. * * However, starting at an unaligned offset makes the * semantics of bad block skipping ambiguous (really, * you should only start a block skipping access at a * partition boundary). So don't try to handle that. */ if ((offset & (nand->writesize - 1)) != 0) { printf("Attempt to write non page-aligned data\n"); *length = 0; return -EINVAL; } need_skip = check_skip_len(nand, offset, *length, &used_for_write); if (actual) *actual = used_for_write; if (need_skip < 0) { printf("Attempt to write outside the flash area\n"); *length = 0; return -EINVAL; } if (used_for_write > lim) { puts("Size of write exceeds partition or device limit\n"); *length = 0; return -EFBIG; } if (!need_skip && !(flags & WITH_DROP_FFS) && !(flags & WITH_YAFFS_OOB)) { rval = nand_write(nand, offset, length, buffer); if ((flags & WITH_WR_VERIFY) && !rval) rval = nand_verify(nand, offset, *length, buffer); if (rval == 0) return 0; *length = 0; printf("NAND write to offset %llx failed %d\n", offset, rval); return rval; } while (left_to_write > 0) { size_t block_offset = offset & (nand->erasesize - 1); size_t write_size, truncated_write_size; WATCHDOG_RESET(); if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) { printf("Skip bad block 0x%08llx\n", offset & ~(nand->erasesize - 1)); offset += nand->erasesize - block_offset; continue; } if (left_to_write < (blocksize - block_offset)) write_size = left_to_write; else write_size = blocksize - block_offset; #ifdef CONFIG_CMD_NAND_YAFFS if (flags & WITH_YAFFS_OOB) { int page, pages; size_t pagesize = nand->writesize; size_t pagesize_oob = pagesize + nand->oobsize; struct mtd_oob_ops ops; ops.len = pagesize; ops.ooblen = nand->oobsize; //ops.mode = MTD_OOB_RAW; ops.mode = 2; ops.ooboffs = 0; pages = write_size / pagesize_oob; for (page = 0; page < pages; page++) { WATCHDOG_RESET(); ops.datbuf = p_buffer; ops.oobbuf = ops.datbuf + pagesize; rval = mtd_write_oob(nand, offset, &ops); if (rval) break; //puts("hello"); offset += pagesize; p_buffer += pagesize_oob; } } else #endif { truncated_write_size = write_size; #ifdef CONFIG_CMD_NAND_TRIMFFS if (flags & WITH_DROP_FFS) truncated_write_size = drop_ffs(nand, p_buffer, &write_size); #endif rval = nand_write(nand, offset, &truncated_write_size, p_buffer); if ((flags & WITH_WR_VERIFY) && !rval) rval = nand_verify(nand, offset, truncated_write_size, p_buffer); offset += write_size; p_buffer += write_size; }/* mark */ if (rval != 0) { printf("NAND write to offset %llx failed %d\n", offset, rval); *length -= left_to_write; return rval; } left_to_write -= write_size; } return 0; } /** * nand_read_skip_bad: * * Read image from NAND flash. * Blocks that are marked bad are skipped and the next block is read * instead as long as the image is short enough to fit even after * skipping the bad blocks. Due to bad blocks we may not be able to * perform the requested read. In the case where the read would extend * beyond the end of the NAND device, both length and actual (if not * NULL) are set to 0. In the case where the read would extend beyond * the limit we are passed, length is set to 0 and actual is set to the * required length. * * @param nand NAND device * @param offset offset in flash * @param length buffer length, on return holds number of read bytes * @param actual set to size required to read length worth of buffer or 0 * on error, if not NULL * @param lim maximum size that actual may be in order to not exceed the * buffer * @param buffer buffer to write to * @return 0 in case of success */ int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length, size_t *actual, loff_t lim, u_char *buffer) { int rval; size_t left_to_read = *length; size_t used_for_read = 0; u_char *p_buffer = buffer; int need_skip; if ((offset & (nand->writesize - 1)) != 0) { printf("Attempt to read non page-aligned data\n"); *length = 0; if (actual) *actual = 0; return -EINVAL; } need_skip = check_skip_len(nand, offset, *length, &used_for_read); if (actual) *actual = used_for_read; if (need_skip < 0) { printf("Attempt to read outside the flash area\n"); *length = 0; return -EINVAL; } if (used_for_read > lim) { puts("Size of read exceeds partition or device limit\n"); *length = 0; return -EFBIG; } if (!need_skip) { rval = nand_read(nand, offset, length, buffer); if (!rval || rval == -EUCLEAN) return 0; *length = 0; printf("NAND read from offset %llx failed %d\n", offset, rval); return rval; } while (left_to_read > 0) { size_t block_offset = offset & (nand->erasesize - 1); size_t read_length; WATCHDOG_RESET(); if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) { printf("Skipping bad block 0x%08llx\n", offset & ~(nand->erasesize - 1)); offset += nand->erasesize - block_offset; continue; } if (left_to_read < (nand->erasesize - block_offset)) read_length = left_to_read; else read_length = nand->erasesize - block_offset; rval = nand_read(nand, offset, &read_length, p_buffer); if (rval && rval != -EUCLEAN) { printf("NAND read from offset %llx failed %d\n", offset, rval); *length -= left_to_read; return rval; } left_to_read -= read_length; offset += read_length; p_buffer += read_length; } return 0; } #ifdef CONFIG_CMD_NAND_TORTURE /** * check_pattern: * * Check if buffer contains only a certain byte pattern. * * @param buf buffer to check * @param patt the pattern to check * @param size buffer size in bytes * @return 1 if there are only patt bytes in buf * 0 if something else was found */ static int check_pattern(const u_char *buf, u_char patt, int size) { int i; for (i = 0; i < size; i++) if (buf[i] != patt) return 0; return 1; } /** * nand_torture: * * Torture a block of NAND flash. * This is useful to determine if a block that caused a write error is still * good or should be marked as bad. * * @param nand NAND device * @param offset offset in flash * @return 0 if the block is still good */ int nand_torture(nand_info_t *nand, loff_t offset) { u_char patterns[] = {0xa5, 0x5a, 0x00}; struct erase_info instr = { .mtd = nand, .addr = offset, .len = nand->erasesize, }; size_t retlen; int err, ret = -1, i, patt_count; u_char *buf; if ((offset & (nand->erasesize - 1)) != 0) { puts("Attempt to torture a block at a non block-aligned offset\n"); return -EINVAL; } if (offset + nand->erasesize > nand->size) { puts("Attempt to torture a block outside the flash area\n"); return -EINVAL; } patt_count = ARRAY_SIZE(patterns); buf = malloc(nand->erasesize); if (buf == NULL) { puts("Out of memory for erase block buffer\n"); return -ENOMEM; } for (i = 0; i < patt_count; i++) { err = nand->erase(nand, &instr); if (err) { printf("%s: erase() failed for block at 0x%llx: %d\n", nand->name, instr.addr, err); goto out; } /* Make sure the block contains only 0xff bytes */ err = nand->read(nand, offset, nand->erasesize, &retlen, buf); if ((err && err != -EUCLEAN) || retlen != nand->erasesize) { printf("%s: read() failed for block at 0x%llx: %d\n", nand->name, instr.addr, err); goto out; } err = check_pattern(buf, 0xff, nand->erasesize); if (!err) { printf("Erased block at 0x%llx, but a non-0xff byte was found\n", offset); ret = -EIO; goto out; } /* Write a pattern and check it */ memset(buf, patterns[i], nand->erasesize); err = nand->write(nand, offset, nand->erasesize, &retlen, buf); if (err || retlen != nand->erasesize) { printf("%s: write() failed for block at 0x%llx: %d\n", nand->name, instr.addr, err); goto out; } err = nand->read(nand, offset, nand->erasesize, &retlen, buf); if ((err && err != -EUCLEAN) || retlen != nand->erasesize) { printf("%s: read() failed for block at 0x%llx: %d\n", nand->name, instr.addr, err); goto out; } err = check_pattern(buf, patterns[i], nand->erasesize); if (!err) { printf("Pattern 0x%.2x checking failed for block at " "0x%llx\n", patterns[i], offset); ret = -EIO; goto out; } } ret = 0; out: free(buf); return ret; } #endif |
smkd2440.h中: 203 #define CONFIG_CMD_NAND_YAFFS |
|
修改以上四个文件后,make编译下载,nor启动。
测试移植yaffs烧写是否成功:
|
reset重启开发板后yaffs文件系统正常挂载!
到这里!纯手敲的字数已经超过17000了,有种写到吐的感觉。。。。
本来计划内是再修改一下代码支持一个u-boot.bin既支持NandFlash启动也支持NorFlash启动的,但是研究一天后u-boot都会挂死,直接死在board_init_r中的initr_nand函数上。追踪了半天也没找到确切的原因,如果您完成了这个功能,请您发一份源代码给我邮箱:hello_xt@qq.com,谢谢了!