移植u-boot-2015.07-rc3之修改代码支持yaffs文件系统烧写(十)

时间:2022-04-19 17:14:17

在以前的u-boot中,使用NandFlash烧写命令nand write.yaffs命令来专门烧写yaffs2文件系统,那时候虽然u-boot在烧写yaffs2文件系统的时候虽然会出错,但是也不至于像u-boot-2015-07这个版本那么变态-----源码上直接不支持nand write.yaffs命令。也不知道是yaffs2这种文件系统被废弃了还是使用了更好的文件系统代替了,反正最新版的u-boot已经在源码上对yaffs2文件系统不支持了(这个结论是对比老版本u-boot和新版本u-boot的common/cmd_nand.c说的,如果您知道原因,还请在下方留言帮一下我)。

         虽然官方的代码不支持了,但是在研究一段时间后也让新版的u-boot支持yaffs2文件系统烧写了,方法主要是对比老版本u-boot的cmd_nand.c和新版本的cmd_nand.c文件,这部分原理性的东西我理解不透彻就不误人子弟了。以下主要贴出修改后的文件:


common/cmd_nand.c中:                                                                                                                                                                                                                                                      

/*
* Driver for NAND support, Rick Bronson
* borrowed heavily from:
* (c) 1999 Machine Vision Holdings, Inc.
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
*
* Ported 'dynenv' to 'nand env.oob' command
* (C) 2010 Nanometrics, Inc.
* 'dynenv' -- Dynamic environment offset in NAND OOB
* (C) Copyright 2006-2007 OpenMoko, Inc.
* Added 16-bit nand support
* (C) 2004 Texas Instruments
*
* Copyright 2010, 2012 Freescale Semiconductor
* The portions of this file whose copyright is held by Freescale and which
* are not considered a derived work of GPL v2-only code may be distributed
* and/or modified under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*/

#include <common.h>
#include <linux/mtd/mtd.h>
#include <command.h>
#include <watchdog.h>
#include <malloc.h>
#include <asm/byteorder.h>
#include <jffs2/jffs2.h>
#include <nand.h>

#if defined(CONFIG_CMD_MTDPARTS)

/* partition handling routines */
int mtdparts_init(void);
int id_parse(const char *id, const char **ret_id, u8 *dev_type, u8 *dev_num);
int find_dev_and_part(const char *id, struct mtd_device **dev,
u8 *part_num, struct part_info **part);
#endif

static int nand_dump(nand_info_t *nand, ulong off, int only_oob, int repeat)
{
int i;
u_char *datbuf, *oobbuf, *p;
static loff_t last;
int ret = 0;

if (repeat)
off = last + nand->writesize;

last = off;

datbuf = memalign(ARCH_DMA_MINALIGN, nand->writesize);
if (!datbuf) {
puts("No memory for page buffer\n");
return 1;
}

oobbuf = memalign(ARCH_DMA_MINALIGN, nand->oobsize);
if (!oobbuf) {
puts("No memory for page buffer\n");
ret = 1;
goto free_dat;
}
off &= ~(nand->writesize - 1);
loff_t addr = (loff_t) off;
struct mtd_oob_ops ops;
memset(&ops, 0, sizeof(ops));
ops.datbuf = datbuf;
ops.oobbuf = oobbuf;
ops.len = nand->writesize;
ops.ooblen = nand->oobsize;
ops.mode = MTD_OPS_RAW;
i = mtd_read_oob(nand, addr, &ops);
if (i < 0) {
printf("Error (%d) reading page %08lx\n", i, off);
ret = 1;
goto free_all;
}
printf("Page %08lx dump:\n", off);

if (!only_oob) {
i = nand->writesize >> 4;
p = datbuf;

while (i--) {
printf("\t%02x %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x %02x %02x %02x %02x %02x %02x\n",
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
p[8], p[9], p[10], p[11], p[12], p[13], p[14],
p[15]);
p += 16;
}
}

puts("OOB:\n");
i = nand->oobsize >> 3;
p = oobbuf;
while (i--) {
printf("\t%02x %02x %02x %02x %02x %02x %02x %02x\n",
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
p += 8;
}

free_all:
free(oobbuf);
free_dat:
free(datbuf);

return ret;
}

/* ------------------------------------------------------------------------- */

static int set_dev(int dev)
{
if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE ||
!nand_info[dev].name) {
puts("No such device\n");
return -1;
}

if (nand_curr_device == dev)
return 0;

printf("Device %d: %s", dev, nand_info[dev].name);
puts("... is now current device\n");
nand_curr_device = dev;

#ifdef CONFIG_SYS_NAND_SELECT_DEVICE
board_nand_select_device(nand_info[dev].priv, dev);
#endif

return 0;
}

#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
static void print_status(ulong start, ulong end, ulong erasesize, int status)
{
/*
* Micron NAND flash (e.g. MT29F4G08ABADAH4) BLOCK LOCK READ STATUS is
* not the same as others. Instead of bit 1 being lock, it is
* #lock_tight. To make the driver support either format, ignore bit 1
* and use only bit 0 and bit 2.
*/
printf("%08lx - %08lx: %08lx blocks %s%s%s\n",
start,
end - 1,
(end - start) / erasesize,
((status & NAND_LOCK_STATUS_TIGHT) ? "TIGHT " : ""),
(!(status & NAND_LOCK_STATUS_UNLOCK) ? "LOCK " : ""),
((status & NAND_LOCK_STATUS_UNLOCK) ? "UNLOCK " : ""));
}

static void do_nand_status(nand_info_t *nand)
{
ulong block_start = 0;
ulong off;
int last_status = -1;

struct nand_chip *nand_chip = nand->priv;
/* check the WP bit */
nand_chip->cmdfunc(nand, NAND_CMD_STATUS, -1, -1);
printf("device is %swrite protected\n",
(nand_chip->read_byte(nand) & 0x80 ?
"NOT " : ""));

for (off = 0; off < nand->size; off += nand->erasesize) {
int s = nand_get_lock_status(nand, off);

/* print message only if status has changed */
if (s != last_status && off != 0) {
print_status(block_start, off, nand->erasesize,
last_status);
block_start = off;
}
last_status = s;
}
/* Print the last block info */
print_status(block_start, off, nand->erasesize, last_status);
}
#endif

#ifdef CONFIG_ENV_OFFSET_OOB
unsigned long nand_env_oob_offset;

int do_nand_env_oob(cmd_tbl_t *cmdtp, int argc, char *const argv[])
{
int ret;
uint32_t oob_buf[ENV_OFFSET_SIZE/sizeof(uint32_t)];
nand_info_t *nand = &nand_info[0];
char *cmd = argv[1];

if (CONFIG_SYS_MAX_NAND_DEVICE == 0 || !nand->name) {
puts("no devices available\n");
return 1;
}

set_dev(0);

if (!strcmp(cmd, "get")) {
ret = get_nand_env_oob(nand, &nand_env_oob_offset);
if (ret)
return 1;

printf("0x%08lx\n", nand_env_oob_offset);
} else if (!strcmp(cmd, "set")) {
loff_t addr;
loff_t maxsize;
struct mtd_oob_ops ops;
int idx = 0;

if (argc < 3)
goto usage;

/* We don't care about size, or maxsize. */
if (mtd_arg_off(argv[2], &idx, &addr, &maxsize, &maxsize,
MTD_DEV_TYPE_NAND, nand_info[idx].size)) {
puts("Offset or partition name expected\n");
return 1;
}
if (set_dev(idx)) {
puts("Offset or partition name expected\n");
return 1;
}

if (idx != 0) {
puts("Partition not on first NAND device\n");
return 1;
}

if (nand->oobavail < ENV_OFFSET_SIZE) {
printf("Insufficient available OOB bytes:\n"
"%d OOB bytes available but %d required for "
"env.oob support\n",
nand->oobavail, ENV_OFFSET_SIZE);
return 1;
}

if ((addr & (nand->erasesize - 1)) != 0) {
printf("Environment offset must be block-aligned\n");
return 1;
}

ops.datbuf = NULL;
ops.mode = MTD_OOB_AUTO;
ops.ooboffs = 0;
ops.ooblen = ENV_OFFSET_SIZE;
ops.oobbuf = (void *) oob_buf;

oob_buf[0] = ENV_OOB_MARKER;
oob_buf[1] = addr / nand->erasesize;

ret = nand->write_oob(nand, ENV_OFFSET_SIZE, &ops);
if (ret) {
printf("Error writing OOB block 0\n");
return ret;
}

ret = get_nand_env_oob(nand, &nand_env_oob_offset);
if (ret) {
printf("Error reading env offset in OOB\n");
return ret;
}

if (addr != nand_env_oob_offset) {
printf("Verification of env offset in OOB failed: "
"0x%08llx expected but got 0x%08lx\n",
(unsigned long long)addr, nand_env_oob_offset);
return 1;
}
} else {
goto usage;
}

return ret;

usage:
return CMD_RET_USAGE;
}

#endif

static void nand_print_and_set_info(int idx)
{
nand_info_t *nand = &nand_info[idx];
struct nand_chip *chip = nand->priv;

printf("Device %d: ", idx);
if (chip->numchips > 1)
printf("%dx ", chip->numchips);
printf("%s, sector size %u KiB\n",
nand->name, nand->erasesize >> 10);
printf(" Page size %8d b\n", nand->writesize);
printf(" OOB size %8d b\n", nand->oobsize);
printf(" Erase size %8d b\n", nand->erasesize);
printf(" subpagesize %8d b\n", chip->subpagesize);
printf(" options 0x%8x\n", chip->options);
printf(" bbt options 0x%8x\n", chip->bbt_options);

/* Set geometry info */
setenv_hex("nand_writesize", nand->writesize);
setenv_hex("nand_oobsize", nand->oobsize);
setenv_hex("nand_erasesize", nand->erasesize);
}

static int raw_access(nand_info_t *nand, ulong addr, loff_t off, ulong count,
int read)
{
int ret = 0;

while (count--) {
/* Raw access */
mtd_oob_ops_t ops = {
.datbuf = (u8 *)addr,
.oobbuf = ((u8 *)addr) + nand->writesize,
.len = nand->writesize,
.ooblen = nand->oobsize,
.mode = MTD_OPS_RAW
};

if (read) {
ret = mtd_read_oob(nand, off, &ops);
} else {
ret = mtd_write_oob(nand, off, &ops);
if (!ret)
ret = nand_verify_page_oob(nand, &ops, off);
}

if (ret) {
printf("%s: error at offset %llx, ret %d\n",
__func__, (long long)off, ret);
break;
}

addr += nand->writesize + nand->oobsize;
off += nand->writesize;
}

return ret;
}

/* Adjust a chip/partition size down for bad blocks so we don't
* read/write past the end of a chip/partition by accident.
*/
static void adjust_size_for_badblocks(loff_t *size, loff_t offset, int dev)
{
/* We grab the nand info object here fresh because this is usually
* called after arg_off_size() which can change the value of dev.
*/
nand_info_t *nand = &nand_info[dev];
loff_t maxoffset = offset + *size;
int badblocks = 0;

/* count badblocks in NAND from offset to offset + size */
for (; offset < maxoffset; offset += nand->erasesize) {
if (nand_block_isbad(nand, offset))
badblocks++;
}
/* adjust size if any bad blocks found */
if (badblocks) {
*size -= badblocks * nand->erasesize;
printf("size adjusted to 0x%llx (%d bad blocks)\n",
(unsigned long long)*size, badblocks);
}
}

static int do_nand(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int i, ret = 0;
ulong addr;
loff_t off, size, maxsize;
char *cmd, *s;
nand_info_t *nand;
#ifdef CONFIG_SYS_NAND_QUIET
int quiet = CONFIG_SYS_NAND_QUIET;
#else
int quiet = 0;
#endif
const char *quiet_str = getenv("quiet");
int dev = nand_curr_device;
int repeat = flag & CMD_FLAG_REPEAT;

/* at least two arguments please */
if (argc < 2)
goto usage;

if (quiet_str)
quiet = simple_strtoul(quiet_str, NULL, 0) != 0;

cmd = argv[1];

/* Only "dump" is repeatable. */
if (repeat && strcmp(cmd, "dump"))
return 0;

if (strcmp(cmd, "info") == 0) {

putc('\n');
for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) {
if (nand_info[i].name)
nand_print_and_set_info(i);
}
return 0;
}

if (strcmp(cmd, "device") == 0) {
if (argc < 3) {
putc('\n');
if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE)
puts("no devices available\n");
else
nand_print_and_set_info(dev);
return 0;
}

dev = (int)simple_strtoul(argv[2], NULL, 10);
set_dev(dev);

return 0;
}

#ifdef CONFIG_ENV_OFFSET_OOB
/* this command operates only on the first nand device */
if (strcmp(cmd, "env.oob") == 0)
return do_nand_env_oob(cmdtp, argc - 1, argv + 1);
#endif

/* The following commands operate on the current device, unless
* overridden by a partition specifier. Note that if somehow the
* current device is invalid, it will have to be changed to a valid
* one before these commands can run, even if a partition specifier
* for another device is to be used.
*/
if (dev < 0 || dev >= CONFIG_SYS_MAX_NAND_DEVICE ||
!nand_info[dev].name) {
puts("\nno devices available\n");
return 1;
}
nand = &nand_info[dev];

if (strcmp(cmd, "bad") == 0) {
printf("\nDevice %d bad blocks:\n", dev);
for (off = 0; off < nand->size; off += nand->erasesize)
if (nand_block_isbad(nand, off))
printf(" %08llx\n", (unsigned long long)off);
return 0;
}

/*
* Syntax is:
* 0 1 2 3 4
* nand erase [clean] [off size]
*/
if (strncmp(cmd, "erase", 5) == 0 || strncmp(cmd, "scrub", 5) == 0) {
nand_erase_options_t opts;
/* "clean" at index 2 means request to write cleanmarker */
int clean = argc > 2 && !strcmp("clean", argv[2]);
int scrub_yes = argc > 2 && !strcmp("-y", argv[2]);
int o = (clean || scrub_yes) ? 3 : 2;
int scrub = !strncmp(cmd, "scrub", 5);
int spread = 0;
int args = 2;
const char *scrub_warn =
"Warning: "
"scrub option will erase all factory set bad blocks!\n"
" "
"There is no reliable way to recover them.\n"
" "
"Use this command only for testing purposes if you\n"
" "
"are sure of what you are doing!\n"
"\nReally scrub this NAND flash? <y/N>\n";

if (cmd[5] != 0) {
if (!strcmp(&cmd[5], ".spread")) {
spread = 1;
} else if (!strcmp(&cmd[5], ".part")) {
args = 1;
} else if (!strcmp(&cmd[5], ".chip")) {
args = 0;
} else {
goto usage;
}
}

/*
* Don't allow missing arguments to cause full chip/partition
* erases -- easy to do accidentally, e.g. with a misspelled
* variable name.
*/
if (argc != o + args)
goto usage;

printf("\nNAND %s: ", cmd);
/* skip first two or three arguments, look for offset and size */
if (mtd_arg_off_size(argc - o, argv + o, &dev, &off, &size,
&maxsize, MTD_DEV_TYPE_NAND,
nand_info[dev].size) != 0)
return 1;

if (set_dev(dev))
return 1;

nand = &nand_info[dev];

memset(&opts, 0, sizeof(opts));
opts.offset = off;
opts.length = size;
opts.jffs2 = clean;
opts.quiet = quiet;
opts.spread = spread;

if (scrub) {
if (scrub_yes) {
opts.scrub = 1;
} else {
puts(scrub_warn);
if (confirm_yesno()) {
opts.scrub = 1;
} else {
puts("scrub aborted\n");
return 1;
}
}
}
ret = nand_erase_opts(nand, &opts);
printf("%s\n", ret ? "ERROR" : "OK");

return ret == 0 ? 0 : 1;
}

if (strncmp(cmd, "dump", 4) == 0) {
if (argc < 3)
goto usage;

off = (int)simple_strtoul(argv[2], NULL, 16);
ret = nand_dump(nand, off, !strcmp(&cmd[4], ".oob"), repeat);

return ret == 0 ? 1 : 0;
}

if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) {
size_t rwsize;
ulong pagecount = 1;
int read;
int raw = 0;

if (argc < 4)
goto usage;

addr = (ulong)simple_strtoul(argv[2], NULL, 16);

read = strncmp(cmd, "read", 4) == 0; /* 1 = read, 0 = write */
printf("\nNAND %s: ", read ? "read" : "write");

s = strchr(cmd, '.');

if (s && !strcmp(s, ".raw")) {
raw = 1;

if (mtd_arg_off(argv[3], &dev, &off, &size, &maxsize,
MTD_DEV_TYPE_NAND,
nand_info[dev].size))
return 1;

if (set_dev(dev))
return 1;

nand = &nand_info[dev];

if (argc > 4 && !str2long(argv[4], &pagecount)) {
printf("'%s' is not a number\n", argv[4]);
return 1;
}

if (pagecount * nand->writesize > size) {
puts("Size exceeds partition or device limit\n");
return -1;
}

rwsize = pagecount * (nand->writesize + nand->oobsize);
} else {
if (mtd_arg_off_size(argc - 3, argv + 3, &dev, &off,
&size, &maxsize,
MTD_DEV_TYPE_NAND,
nand_info[dev].size) != 0)
return 1;

if (set_dev(dev))
return 1;

/* size is unspecified */
if (argc < 5)
adjust_size_for_badblocks(&size, off, dev);
rwsize = size;
}

nand = &nand_info[dev];

if (!s || !strcmp(s, ".jffs2") ||
!strcmp(s, ".e") || !strcmp(s, ".i")) {
if (read)
ret = nand_read_skip_bad(nand, off, &rwsize,
NULL, maxsize,
(u_char *)addr);
else
ret = nand_write_skip_bad(nand, off, &rwsize,
NULL, maxsize,
(u_char *)addr,
WITH_WR_VERIFY);
#ifdef CONFIG_CMD_NAND_TRIMFFS
} else if (!strcmp(s, ".trimffs")) {
if (read) {
printf("Unknown nand command suffix '%s'\n", s);
return 1;
}
ret = nand_write_skip_bad(nand, off, &rwsize, NULL,
maxsize, (u_char *)addr,
WITH_DROP_FFS);
#endif
#ifdef CONFIG_CMD_NAND_YAFFS
} else if (!strcmp(s, ".yaffs")) {
if (read) {
printf("Unknown nand command suffix '%s'.\n", s);
return 1;
}
ret = nand_write_skip_bad(nand, off, &rwsize, NULL,
maxsize, (u_char *)addr,
WITH_YAFFS_OOB);
#endif
} else if (!strcmp(s, ".oob")) {
/* out-of-band data */
mtd_oob_ops_t ops = {
.oobbuf = (u8 *)addr,
.ooblen = rwsize,
.mode = MTD_OPS_RAW
};

if (read)
ret = mtd_read_oob(nand, off, &ops);
else
ret = mtd_write_oob(nand, off, &ops);
} else if (raw) {
ret = raw_access(nand, addr, off, pagecount, read);
} else {
printf("Unknown nand command suffix '%s'.\n", s);
return 1;
}

printf(" %zu bytes %s: %s\n", rwsize,
read ? "read" : "written", ret ? "ERROR" : "OK");

return ret == 0 ? 0 : 1;
}

#ifdef CONFIG_CMD_NAND_TORTURE
if (strcmp(cmd, "torture") == 0) {
if (argc < 3)
goto usage;

if (!str2off(argv[2], &off)) {
puts("Offset is not a valid number\n");
return 1;
}

printf("\nNAND torture: device %d offset 0x%llx size 0x%x\n",
dev, off, nand->erasesize);
ret = nand_torture(nand, off);
printf(" %s\n", ret ? "Failed" : "Passed");

return ret == 0 ? 0 : 1;
}
#endif

if (strcmp(cmd, "markbad") == 0) {
argc -= 2;
argv += 2;

if (argc <= 0)
goto usage;

while (argc > 0) {
addr = simple_strtoul(*argv, NULL, 16);

if (mtd_block_markbad(nand, addr)) {
printf("block 0x%08lx NOT marked "
"as bad! ERROR %d\n",
addr, ret);
ret = 1;
} else {
printf("block 0x%08lx successfully "
"marked as bad\n",
addr);
}
--argc;
++argv;
}
return ret;
}

if (strcmp(cmd, "biterr") == 0) {
/* todo */
return 1;
}

#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
if (strcmp(cmd, "lock") == 0) {
int tight = 0;
int status = 0;
if (argc == 3) {
if (!strcmp("tight", argv[2]))
tight = 1;
if (!strcmp("status", argv[2]))
status = 1;
}
if (status) {
do_nand_status(nand);
} else {
if (!nand_lock(nand, tight)) {
puts("NAND flash successfully locked\n");
} else {
puts("Error locking NAND flash\n");
return 1;
}
}
return 0;
}

if (strncmp(cmd, "unlock", 5) == 0) {
int allexcept = 0;

s = strchr(cmd, '.');

if (s && !strcmp(s, ".allexcept"))
allexcept = 1;

if (mtd_arg_off_size(argc - 2, argv + 2, &dev, &off, &size,
&maxsize, MTD_DEV_TYPE_NAND,
nand_info[dev].size) < 0)
return 1;

if (set_dev(dev))
return 1;

if (!nand_unlock(&nand_info[dev], off, size, allexcept)) {
puts("NAND flash successfully unlocked\n");
} else {
puts("Error unlocking NAND flash, "
"write and erase will probably fail\n");
return 1;
}
return 0;
}
#endif

usage:
return CMD_RET_USAGE;
}

#ifdef CONFIG_SYS_LONGHELP
static char nand_help_text[] =
"info - show available NAND devices\n"
"nand device [dev] - show or set current device\n"
"nand read - addr off|partition size\n"
"nand write - addr off|partition size\n"
" read/write 'size' bytes starting at offset 'off'\n"
" to/from memory address 'addr', skipping bad blocks.\n"
"nand read.raw - addr off|partition [count]\n"
"nand write.raw - addr off|partition [count]\n"
" Use read.raw/write.raw to avoid ECC and access the flash as-is.\n"
#ifdef CONFIG_CMD_NAND_TRIMFFS
"nand write.trimffs - addr off|partition size\n"
" write 'size' bytes starting at offset 'off' from memory address\n"
" 'addr', skipping bad blocks and dropping any pages at the end\n"
" of eraseblocks that contain only 0xFF\n"
#endif
#ifdef CONFIG_CMD_NAND_YAFFS
"nand write.yaffs - addr off|partition size\n"
" write 'size' bytes starting at offset 'off' with yaffs format\n"
" from memory address 'addr', skipping bad blocks.\n"
#endif
"nand erase[.spread] [clean] off size - erase 'size' bytes "
"from offset 'off'\n"
" With '.spread', erase enough for given file size, otherwise,\n"
" 'size' includes skipped bad blocks.\n"
"nand erase.part [clean] partition - erase entire mtd partition'\n"
"nand erase.chip [clean] - erase entire chip'\n"
"nand bad - show bad blocks\n"
"nand dump[.oob] off - dump page\n"
#ifdef CONFIG_CMD_NAND_TORTURE
"nand torture off - torture block at offset\n"
#endif
"nand scrub [-y] off size | scrub.part partition | scrub.chip\n"
" really clean NAND erasing bad blocks (UNSAFE)\n"
"nand markbad off [...] - mark bad block(s) at offset (UNSAFE)\n"
"nand biterr off - make a bit error at offset (UNSAFE)"
#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
"\n"
"nand lock [tight] [status]\n"
" bring nand to lock state or display locked pages\n"
"nand unlock[.allexcept] [offset] [size] - unlock section"
#endif
#ifdef CONFIG_ENV_OFFSET_OOB
"\n"
"nand env.oob - environment offset in OOB of block 0 of"
" first device.\n"
"nand env.oob set off|partition - set enviromnent offset\n"
"nand env.oob get - get environment offset"
#endif
"";
#endif

U_BOOT_CMD(
nand, CONFIG_SYS_MAXARGS, 1, do_nand,
"NAND sub-system", nand_help_text
);

static int nand_load_image(cmd_tbl_t *cmdtp, nand_info_t *nand,
ulong offset, ulong addr, char *cmd)
{
int r;
char *s;
size_t cnt;
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
image_header_t *hdr;
#endif
#if defined(CONFIG_FIT)
const void *fit_hdr = NULL;
#endif

s = strchr(cmd, '.');
if (s != NULL &&
(strcmp(s, ".jffs2") && strcmp(s, ".e") && strcmp(s, ".i"))) {
printf("Unknown nand load suffix '%s'\n", s);
bootstage_error(BOOTSTAGE_ID_NAND_SUFFIX);
return 1;
}

printf("\nLoading from %s, offset 0x%lx\n", nand->name, offset);

cnt = nand->writesize;
r = nand_read_skip_bad(nand, offset, &cnt, NULL, nand->size,
(u_char *)addr);
if (r) {
puts("** Read error\n");
bootstage_error(BOOTSTAGE_ID_NAND_HDR_READ);
return 1;
}
bootstage_mark(BOOTSTAGE_ID_NAND_HDR_READ);

switch (genimg_get_format ((void *)addr)) {
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
case IMAGE_FORMAT_LEGACY:
hdr = (image_header_t *)addr;

bootstage_mark(BOOTSTAGE_ID_NAND_TYPE);
image_print_contents (hdr);

cnt = image_get_image_size (hdr);
break;
#endif
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
fit_hdr = (const void *)addr;
puts ("Fit image detected...\n");

cnt = fit_get_size (fit_hdr);
break;
#endif
default:
bootstage_error(BOOTSTAGE_ID_NAND_TYPE);
puts ("** Unknown image type\n");
return 1;
}
bootstage_mark(BOOTSTAGE_ID_NAND_TYPE);

r = nand_read_skip_bad(nand, offset, &cnt, NULL, nand->size,
(u_char *)addr);
if (r) {
puts("** Read error\n");
bootstage_error(BOOTSTAGE_ID_NAND_READ);
return 1;
}
bootstage_mark(BOOTSTAGE_ID_NAND_READ);

#if defined(CONFIG_FIT)
/* This cannot be done earlier, we need complete FIT image in RAM first */
if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) {
if (!fit_check_format (fit_hdr)) {
bootstage_error(BOOTSTAGE_ID_NAND_FIT_READ);
puts ("** Bad FIT image format\n");
return 1;
}
bootstage_mark(BOOTSTAGE_ID_NAND_FIT_READ_OK);
fit_print_contents (fit_hdr);
}
#endif

/* Loading ok, update default load address */

load_addr = addr;

return bootm_maybe_autostart(cmdtp, cmd);
}

static int do_nandboot(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
char *boot_device = NULL;
int idx;
ulong addr, offset = 0;
#if defined(CONFIG_CMD_MTDPARTS)
struct mtd_device *dev;
struct part_info *part;
u8 pnum;

if (argc >= 2) {
char *p = (argc == 2) ? argv[1] : argv[2];
if (!(str2long(p, &addr)) && (mtdparts_init() == 0) &&
(find_dev_and_part(p, &dev, &pnum, &part) == 0)) {
if (dev->id->type != MTD_DEV_TYPE_NAND) {
puts("Not a NAND device\n");
return 1;
}
if (argc > 3)
goto usage;
if (argc == 3)
addr = simple_strtoul(argv[1], NULL, 16);
else
addr = CONFIG_SYS_LOAD_ADDR;
return nand_load_image(cmdtp, &nand_info[dev->id->num],
part->offset, addr, argv[0]);
}
}
#endif

bootstage_mark(BOOTSTAGE_ID_NAND_PART);
switch (argc) {
case 1:
addr = CONFIG_SYS_LOAD_ADDR;
boot_device = getenv("bootdevice");
break;
case 2:
addr = simple_strtoul(argv[1], NULL, 16);
boot_device = getenv("bootdevice");
break;
case 3:
addr = simple_strtoul(argv[1], NULL, 16);
boot_device = argv[2];
break;
case 4:
addr = simple_strtoul(argv[1], NULL, 16);
boot_device = argv[2];
offset = simple_strtoul(argv[3], NULL, 16);
break;
default:
#if defined(CONFIG_CMD_MTDPARTS)
usage:
#endif
bootstage_error(BOOTSTAGE_ID_NAND_SUFFIX);
return CMD_RET_USAGE;
}
bootstage_mark(BOOTSTAGE_ID_NAND_SUFFIX);

if (!boot_device) {
puts("\n** No boot device **\n");
bootstage_error(BOOTSTAGE_ID_NAND_BOOT_DEVICE);
return 1;
}
bootstage_mark(BOOTSTAGE_ID_NAND_BOOT_DEVICE);

idx = simple_strtoul(boot_device, NULL, 16);

if (idx < 0 || idx >= CONFIG_SYS_MAX_NAND_DEVICE || !nand_info[idx].name) {
printf("\n** Device %d not available\n", idx);
bootstage_error(BOOTSTAGE_ID_NAND_AVAILABLE);
return 1;
}
bootstage_mark(BOOTSTAGE_ID_NAND_AVAILABLE);

return nand_load_image(cmdtp, &nand_info[idx], offset, addr, argv[0]);
}

U_BOOT_CMD(nboot, 4, 1, do_nandboot,
"boot from NAND device",
"[partition] | [[[loadAddr] dev] offset]"
);



 

drivers/mtd/nand/nand_util.c文件中:                                                                                                                                                                                                                                 

 

/*
* drivers/mtd/nand/nand_util.c
*
* Copyright (C) 2006 by Weiss-Electronic GmbH.
* All rights reserved.
*
* @author:Guido Classen <clagix@gmail.com>
* @descr:NAND Flash support
* @references: borrowed heavily from Linux mtd-utils code:
*flash_eraseall.c by Arcom Control System Ltd
*nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
* and Thomas Gleixner (tglx@linutronix.de)
*
* Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
* Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
*
* Copyright 2010 Freescale Semiconductor
*
* SPDX-License-Identifier:GPL-2.0
*/

#include <common.h>
#include <command.h>
#include <watchdog.h>
#include <malloc.h>
#include <div64.h>

#include <asm/errno.h>
#include <linux/mtd/mtd.h>
#include <nand.h>
#include <jffs2/jffs2.h>

typedef struct erase_infoerase_info_t;
typedef struct mtd_infomtd_info_t;

/* support only for native endian JFFS2 */
#define cpu_to_je16(x) (x)
#define cpu_to_je32(x) (x)

/**
* nand_erase_opts: - erase NAND flash with support for various options
* (jffs2 formatting)
*
* @param meminfoNAND device to erase
* @param optsoptions, @see struct nand_erase_options
* @return0 in case of success
*
* This code is ported from flash_eraseall.c from Linux mtd utils by
* Arcom Control System Ltd.
*/
int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
{
struct jffs2_unknown_node cleanmarker;
erase_info_t erase;
unsigned long erase_length, erased_length; /* in blocks */
int result;
int percent_complete = -1;
const char *mtd_device = meminfo->name;
struct mtd_oob_ops oob_opts;
struct nand_chip *chip = meminfo->priv;

if ((opts->offset & (meminfo->erasesize - 1)) != 0) {
printf("Attempt to erase non block-aligned data\n");
return -1;
}

memset(&erase, 0, sizeof(erase));
memset(&oob_opts, 0, sizeof(oob_opts));

erase.mtd = meminfo;
erase.len = meminfo->erasesize;
erase.addr = opts->offset;
erase_length = lldiv(opts->length + meminfo->erasesize - 1,
meminfo->erasesize);

cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
cleanmarker.totlen = cpu_to_je32(8);

/* scrub option allows to erase badblock. To prevent internal
* check from erase() method, set block check method to dummy
* and disable bad block table while erasing.
*/
if (opts->scrub) {
erase.scrub = opts->scrub;
/*
* We don't need the bad block table anymore...
* after scrub, there are no bad blocks left!
*/
if (chip->bbt) {
kfree(chip->bbt);
}
chip->bbt = NULL;
chip->options &= ~NAND_BBT_SCANNED;
}

for (erased_length = 0;
erased_length < erase_length;
erase.addr += meminfo->erasesize) {

WATCHDOG_RESET();

if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
puts("Size of erase exceeds limit\n");
return -EFBIG;
}
if (!opts->scrub) {
int ret = mtd_block_isbad(meminfo, erase.addr);
if (ret > 0) {
if (!opts->quiet)
printf("\rSkipping bad block at "
"0x%08llx "
" \n",
erase.addr);

if (!opts->spread)
erased_length++;

continue;

} else if (ret < 0) {
printf("\n%s: MTD get bad block failed: %d\n",
mtd_device,
ret);
return -1;
}
}

erased_length++;

result = mtd_erase(meminfo, &erase);
if (result != 0) {
printf("\n%s: MTD Erase failure: %d\n",
mtd_device, result);
continue;
}

/* format for JFFS2 ? */
if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
struct mtd_oob_ops ops;
ops.ooblen = 8;
ops.datbuf = NULL;
ops.oobbuf = (uint8_t *)&cleanmarker;
ops.ooboffs = 0;
ops.mode = MTD_OPS_AUTO_OOB;

result = mtd_write_oob(meminfo,
erase.addr,
&ops);
if (result != 0) {
printf("\n%s: MTD writeoob failure: %d\n",
mtd_device, result);
continue;
}
}

if (!opts->quiet) {
unsigned long long n = erased_length * 100ULL;
int percent;

do_div(n, erase_length);
percent = (int)n;

/* output progress message only at whole percent
* steps to reduce the number of messages printed
* on (slow) serial consoles
*/
if (percent != percent_complete) {
percent_complete = percent;

printf("\rErasing at 0x%llx -- %3d%% complete.",
erase.addr, percent);

if (opts->jffs2 && result == 0)
printf(" Cleanmarker written at 0x%llx.",
erase.addr);
}
}
}
if (!opts->quiet)
printf("\n");

return 0;
}

#ifdef CONFIG_CMD_NAND_LOCK_UNLOCK

#define NAND_CMD_LOCK_TIGHT 0x2c
#define NAND_CMD_LOCK_STATUS 0x7a

/******************************************************************************
* Support for locking / unlocking operations of some NAND devices
*****************************************************************************/

/**
* nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
* state
*
* @param mtdnand mtd instance
* @param tightbring device in lock tight mode
*
* @return0 on success, -1 in case of error
*
* The lock / lock-tight command only applies to the whole chip. To get some
* parts of the chip lock and others unlocked use the following sequence:
*
* - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
* - Call nand_unlock() once for each consecutive area to be unlocked
* - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
*
* If the device is in lock-tight state software can't change the
* current active lock/unlock state of all pages. nand_lock() / nand_unlock()
* calls will fail. It is only posible to leave lock-tight state by
* an hardware signal (low pulse on _WP pin) or by power down.
*/
int nand_lock(struct mtd_info *mtd, int tight)
{
int ret = 0;
int status;
struct nand_chip *chip = mtd->priv;

/* select the NAND device */
chip->select_chip(mtd, 0);

/* check the Lock Tight Status */
chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
printf("nand_lock: Device is locked tight!\n");
ret = -1;
goto out;
}

chip->cmdfunc(mtd,
(tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
-1, -1);

/* call wait ready function */
status = chip->waitfunc(mtd, chip);

/* see if device thinks it succeeded */
if (status & 0x01) {
ret = -1;
}

out:
/* de-select the NAND device */
chip->select_chip(mtd, -1);
return ret;
}

/**
* nand_get_lock_status: - query current lock state from one page of NAND
* flash
*
* @param mtdnand mtd instance
* @param offsetpage address to query (must be page-aligned!)
*
* @return-1 in case of error
*>0 lock status:
* bitfield with the following combinations:
* NAND_LOCK_STATUS_TIGHT: page in tight state
* NAND_LOCK_STATUS_UNLOCK: page unlocked
*
*/
int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
{
int ret = 0;
int chipnr;
int page;
struct nand_chip *chip = mtd->priv;

/* select the NAND device */
chipnr = (int)(offset >> chip->chip_shift);
chip->select_chip(mtd, chipnr);


if ((offset & (mtd->writesize - 1)) != 0) {
printf("nand_get_lock_status: "
"Start address must be beginning of "
"nand page!\n");
ret = -1;
goto out;
}

/* check the Lock Status */
page = (int)(offset >> chip->page_shift);
chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);

ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
| NAND_LOCK_STATUS_UNLOCK);

out:
/* de-select the NAND device */
chip->select_chip(mtd, -1);
return ret;
}

/**
* nand_unlock: - Unlock area of NAND pages
* only one consecutive area can be unlocked at one time!
*
* @param mtdnand mtd instance
* @param startstart byte address
* @param lengthnumber of bytes to unlock (must be a multiple of
*page size nand->writesize)
* @param allexceptif set, unlock everything not selected
*
* @return0 on success, -1 in case of error
*/
int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
int allexcept)
{
int ret = 0;
int chipnr;
int status;
int page;
struct nand_chip *chip = mtd->priv;

debug("nand_unlock%s: start: %08llx, length: %zd!\n",
allexcept ? " (allexcept)" : "", start, length);

/* select the NAND device */
chipnr = (int)(start >> chip->chip_shift);
chip->select_chip(mtd, chipnr);

/* check the WP bit */
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
printf("nand_unlock: Device is write protected!\n");
ret = -1;
goto out;
}

/* check the Lock Tight Status */
page = (int)(start >> chip->page_shift);
chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
printf("nand_unlock: Device is locked tight!\n");
ret = -1;
goto out;
}

if ((start & (mtd->erasesize - 1)) != 0) {
printf("nand_unlock: Start address must be beginning of "
"nand block!\n");
ret = -1;
goto out;
}

if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
printf("nand_unlock: Length must be a multiple of nand block "
"size %08x!\n", mtd->erasesize);
ret = -1;
goto out;
}

/*
* Set length so that the last address is set to the
* starting address of the last block
*/
length -= mtd->erasesize;

/* submit address of first page to unlock */
chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);

/* submit ADDRESS of LAST page to unlock */
page += (int)(length >> chip->page_shift);

/*
* Page addresses for unlocking are supposed to be block-aligned.
* At least some NAND chips use the low bit to indicate that the
* page range should be inverted.
*/
if (allexcept)
page |= 1;

chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);

/* call wait ready function */
status = chip->waitfunc(mtd, chip);
/* see if device thinks it succeeded */
if (status & 0x01) {
/* there was an error */
ret = -1;
goto out;
}

out:
/* de-select the NAND device */
chip->select_chip(mtd, -1);
return ret;
}
#endif

/**
* check_skip_len
*
* Check if there are any bad blocks, and whether length including bad
* blocks fits into device
*
* @param nand NAND device
* @param offset offset in flash
* @param length image length
* @param used length of flash needed for the requested length
* @return 0 if the image fits and there are no bad blocks
* 1 if the image fits, but there are bad blocks
* -1 if the image does not fit
*/
static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length,
size_t *used)
{
size_t len_excl_bad = 0;
int ret = 0;

while (len_excl_bad < length) {
size_t block_len, block_off;
loff_t block_start;

if (offset >= nand->size)
return -1;

block_start = offset & ~(loff_t)(nand->erasesize - 1);
block_off = offset & (nand->erasesize - 1);
block_len = nand->erasesize - block_off;

if (!nand_block_isbad(nand, block_start))
len_excl_bad += block_len;
else
ret = 1;

offset += block_len;
*used += block_len;
}

/* If the length is not a multiple of block_len, adjust. */
if (len_excl_bad > length)
*used -= (len_excl_bad - length);

return ret;
}

#ifdef CONFIG_CMD_NAND_TRIMFFS
static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
const size_t *len)
{
size_t l = *len;
ssize_t i;

for (i = l - 1; i >= 0; i--)
if (buf[i] != 0xFF)
break;

/* The resulting length must be aligned to the minimum flash I/O size */
l = i + 1;
l = (l + nand->writesize - 1) / nand->writesize;
l *= nand->writesize;

/*
* since the input length may be unaligned, prevent access past the end
* of the buffer
*/
return min(l, *len);
}
#endif

/**
* nand_verify_page_oob:
*
* Verify a page of NAND flash, including the OOB.
* Reads page of NAND and verifies the contents and OOB against the
* values in ops.
*
* @param nandNAND device
* @param opsMTD operations, including data to verify
* @param ofsoffset in flash
* @return0 in case of success
*/
int nand_verify_page_oob(nand_info_t *nand, struct mtd_oob_ops *ops, loff_t ofs)
{
int rval;
struct mtd_oob_ops vops;
size_t verlen = nand->writesize + nand->oobsize;

memcpy(&vops, ops, sizeof(vops));

vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen);

if (!vops.datbuf)
return -ENOMEM;

vops.oobbuf = vops.datbuf + nand->writesize;

rval = mtd_read_oob(nand, ofs, &vops);
if (!rval)
rval = memcmp(ops->datbuf, vops.datbuf, vops.len);
if (!rval)
rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen);

free(vops.datbuf);

return rval ? -EIO : 0;
}

/**
* nand_verify:
*
* Verify a region of NAND flash.
* Reads NAND in page-sized chunks and verifies the contents against
* the contents of a buffer. The offset into the NAND must be
* page-aligned, and the function doesn't handle skipping bad blocks.
*
* @param nandNAND device
* @param ofsoffset in flash
* @param lenbuffer length
* @param bufbuffer to read from
* @return0 in case of success
*/
int nand_verify(nand_info_t *nand, loff_t ofs, size_t len, u_char *buf)
{
int rval = 0;
size_t verofs;
size_t verlen = nand->writesize;
uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen);

if (!verbuf)
return -ENOMEM;

/* Read the NAND back in page-size groups to limit malloc size */
for (verofs = ofs; verofs < ofs + len;
verofs += verlen, buf += verlen) {
verlen = min(nand->writesize, (uint32_t)(ofs + len - verofs));
rval = nand_read(nand, verofs, &verlen, verbuf);
if (!rval || (rval == -EUCLEAN))
rval = memcmp(buf, verbuf, verlen);

if (rval)
break;
}

free(verbuf);

return rval ? -EIO : 0;
}



/**
* nand_write_skip_bad:
*
* Write image to NAND flash.
* Blocks that are marked bad are skipped and the is written to the next
* block instead as long as the image is short enough to fit even after
* skipping the bad blocks. Due to bad blocks we may not be able to
* perform the requested write. In the case where the write would
* extend beyond the end of the NAND device, both length and actual (if
* not NULL) are set to 0. In the case where the write would extend
* beyond the limit we are passed, length is set to 0 and actual is set
* to the required length.
*
* @param nand NAND device
* @param offsetoffset in flash
* @param lengthbuffer length
* @param actualset to size required to write length worth of
*buffer or 0 on error, if not NULL
* @param limmaximum size that actual may be in order to not
*exceed the buffer
* @param buffer buffer to read from
* @param flagsflags modifying the behaviour of the write to NAND
* @return0 in case of success
*/
int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
size_t *actual, loff_t lim, u_char *buffer, int flags)
{
int rval = 0, blocksize;
size_t left_to_write = *length;
size_t used_for_write = 0;
u_char *p_buffer = buffer;
int need_skip;

if (actual)
*actual = 0;

#ifdef CONFIG_CMD_NAND_YAFFS
if (flags & WITH_YAFFS_OOB) {
if (flags & ~WITH_YAFFS_OOB)
return -EINVAL;

int pages;
pages = nand->erasesize / nand->writesize;
blocksize = (pages * nand->oobsize) + nand->erasesize;
if (*length % (nand->writesize + nand->oobsize)) {
printf("Attempt to write incomplete page"
" in yaffs mode\n");
return -EINVAL;
}
} else
#endif
{
blocksize = nand->erasesize;
}

/*
* nand_write() handles unaligned, partial page writes.
*
* We allow length to be unaligned, for convenience in
* using the $filesize variable.
*
* However, starting at an unaligned offset makes the
* semantics of bad block skipping ambiguous (really,
* you should only start a block skipping access at a
* partition boundary). So don't try to handle that.
*/
if ((offset & (nand->writesize - 1)) != 0) {
printf("Attempt to write non page-aligned data\n");
*length = 0;
return -EINVAL;
}

need_skip = check_skip_len(nand, offset, *length, &used_for_write);

if (actual)
*actual = used_for_write;

if (need_skip < 0) {
printf("Attempt to write outside the flash area\n");
*length = 0;
return -EINVAL;
}

if (used_for_write > lim) {
puts("Size of write exceeds partition or device limit\n");
*length = 0;
return -EFBIG;
}

if (!need_skip && !(flags & WITH_DROP_FFS) && !(flags & WITH_YAFFS_OOB)) {
rval = nand_write(nand, offset, length, buffer);

if ((flags & WITH_WR_VERIFY) && !rval)
rval = nand_verify(nand, offset, *length, buffer);

if (rval == 0)
return 0;

*length = 0;
printf("NAND write to offset %llx failed %d\n",
offset, rval);
return rval;
}

while (left_to_write > 0) {
size_t block_offset = offset & (nand->erasesize - 1);
size_t write_size, truncated_write_size;

WATCHDOG_RESET();

if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
printf("Skip bad block 0x%08llx\n",
offset & ~(nand->erasesize - 1));
offset += nand->erasesize - block_offset;
continue;
}

if (left_to_write < (blocksize - block_offset))
write_size = left_to_write;
else
write_size = blocksize - block_offset;

#ifdef CONFIG_CMD_NAND_YAFFS
if (flags & WITH_YAFFS_OOB) {
int page, pages;
size_t pagesize = nand->writesize;
size_t pagesize_oob = pagesize + nand->oobsize;
struct mtd_oob_ops ops;

ops.len = pagesize;
ops.ooblen = nand->oobsize;
//ops.mode = MTD_OOB_RAW;
ops.mode = 2;
ops.ooboffs = 0;

pages = write_size / pagesize_oob;
for (page = 0; page < pages; page++) {
WATCHDOG_RESET();

ops.datbuf = p_buffer;
ops.oobbuf = ops.datbuf + pagesize;

rval = mtd_write_oob(nand, offset, &ops);
if (rval)
break;

//puts("hello");

offset += pagesize;
p_buffer += pagesize_oob;
}
}
else
#endif
{
truncated_write_size = write_size;
#ifdef CONFIG_CMD_NAND_TRIMFFS
if (flags & WITH_DROP_FFS)
truncated_write_size = drop_ffs(nand, p_buffer,
&write_size);
#endif

rval = nand_write(nand, offset, &truncated_write_size,
p_buffer);

if ((flags & WITH_WR_VERIFY) && !rval)
rval = nand_verify(nand, offset,
truncated_write_size, p_buffer);

offset += write_size;
p_buffer += write_size;
}/* mark */

if (rval != 0) {
printf("NAND write to offset %llx failed %d\n",
offset, rval);
*length -= left_to_write;
return rval;
}

left_to_write -= write_size;
}

return 0;
}

/**
* nand_read_skip_bad:
*
* Read image from NAND flash.
* Blocks that are marked bad are skipped and the next block is read
* instead as long as the image is short enough to fit even after
* skipping the bad blocks. Due to bad blocks we may not be able to
* perform the requested read. In the case where the read would extend
* beyond the end of the NAND device, both length and actual (if not
* NULL) are set to 0. In the case where the read would extend beyond
* the limit we are passed, length is set to 0 and actual is set to the
* required length.
*
* @param nand NAND device
* @param offset offset in flash
* @param length buffer length, on return holds number of read bytes
* @param actual set to size required to read length worth of buffer or 0
* on error, if not NULL
* @param lim maximum size that actual may be in order to not exceed the
* buffer
* @param buffer buffer to write to
* @return 0 in case of success
*/
int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
size_t *actual, loff_t lim, u_char *buffer)
{
int rval;
size_t left_to_read = *length;
size_t used_for_read = 0;
u_char *p_buffer = buffer;
int need_skip;

if ((offset & (nand->writesize - 1)) != 0) {
printf("Attempt to read non page-aligned data\n");
*length = 0;
if (actual)
*actual = 0;
return -EINVAL;
}

need_skip = check_skip_len(nand, offset, *length, &used_for_read);

if (actual)
*actual = used_for_read;

if (need_skip < 0) {
printf("Attempt to read outside the flash area\n");
*length = 0;
return -EINVAL;
}

if (used_for_read > lim) {
puts("Size of read exceeds partition or device limit\n");
*length = 0;
return -EFBIG;
}

if (!need_skip) {
rval = nand_read(nand, offset, length, buffer);
if (!rval || rval == -EUCLEAN)
return 0;

*length = 0;
printf("NAND read from offset %llx failed %d\n",
offset, rval);
return rval;
}

while (left_to_read > 0) {
size_t block_offset = offset & (nand->erasesize - 1);
size_t read_length;

WATCHDOG_RESET();

if (nand_block_isbad(nand, offset & ~(nand->erasesize - 1))) {
printf("Skipping bad block 0x%08llx\n",
offset & ~(nand->erasesize - 1));
offset += nand->erasesize - block_offset;
continue;
}

if (left_to_read < (nand->erasesize - block_offset))
read_length = left_to_read;
else
read_length = nand->erasesize - block_offset;

rval = nand_read(nand, offset, &read_length, p_buffer);
if (rval && rval != -EUCLEAN) {
printf("NAND read from offset %llx failed %d\n",
offset, rval);
*length -= left_to_read;
return rval;
}

left_to_read -= read_length;
offset += read_length;
p_buffer += read_length;
}

return 0;
}

#ifdef CONFIG_CMD_NAND_TORTURE

/**
* check_pattern:
*
* Check if buffer contains only a certain byte pattern.
*
* @param buf buffer to check
* @param patt the pattern to check
* @param size buffer size in bytes
* @return 1 if there are only patt bytes in buf
* 0 if something else was found
*/
static int check_pattern(const u_char *buf, u_char patt, int size)
{
int i;

for (i = 0; i < size; i++)
if (buf[i] != patt)
return 0;
return 1;
}

/**
* nand_torture:
*
* Torture a block of NAND flash.
* This is useful to determine if a block that caused a write error is still
* good or should be marked as bad.
*
* @param nand NAND device
* @param offset offset in flash
* @return 0 if the block is still good
*/
int nand_torture(nand_info_t *nand, loff_t offset)
{
u_char patterns[] = {0xa5, 0x5a, 0x00};
struct erase_info instr = {
.mtd = nand,
.addr = offset,
.len = nand->erasesize,
};
size_t retlen;
int err, ret = -1, i, patt_count;
u_char *buf;

if ((offset & (nand->erasesize - 1)) != 0) {
puts("Attempt to torture a block at a non block-aligned offset\n");
return -EINVAL;
}

if (offset + nand->erasesize > nand->size) {
puts("Attempt to torture a block outside the flash area\n");
return -EINVAL;
}

patt_count = ARRAY_SIZE(patterns);

buf = malloc(nand->erasesize);
if (buf == NULL) {
puts("Out of memory for erase block buffer\n");
return -ENOMEM;
}

for (i = 0; i < patt_count; i++) {
err = nand->erase(nand, &instr);
if (err) {
printf("%s: erase() failed for block at 0x%llx: %d\n",
nand->name, instr.addr, err);
goto out;
}

/* Make sure the block contains only 0xff bytes */
err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
printf("%s: read() failed for block at 0x%llx: %d\n",
nand->name, instr.addr, err);
goto out;
}

err = check_pattern(buf, 0xff, nand->erasesize);
if (!err) {
printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
offset);
ret = -EIO;
goto out;
}

/* Write a pattern and check it */
memset(buf, patterns[i], nand->erasesize);
err = nand->write(nand, offset, nand->erasesize, &retlen, buf);
if (err || retlen != nand->erasesize) {
printf("%s: write() failed for block at 0x%llx: %d\n",
nand->name, instr.addr, err);
goto out;
}

err = nand->read(nand, offset, nand->erasesize, &retlen, buf);
if ((err && err != -EUCLEAN) || retlen != nand->erasesize) {
printf("%s: read() failed for block at 0x%llx: %d\n",
nand->name, instr.addr, err);
goto out;
}

err = check_pattern(buf, patterns[i], nand->erasesize);
if (!err) {
printf("Pattern 0x%.2x checking failed for block at "
"0x%llx\n", patterns[i], offset);
ret = -EIO;
goto out;
}
}

ret = 0;

out:
free(buf);
return ret;
}

#endif

 

smkd2440.h中:                                                                                                                                                                                                                                                                     

203 #define CONFIG_CMD_NAND_YAFFS

 

include/nand.h文件中:                                                                                                                                                                                                                                                         

111 int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,

112                         size_t *actual, loff_t lim, u_char *buffer, int flags);

113

114 #define WITH_YAFFS_OOB  (1 << 0) /* whether write with yaffs format. This flag

115                                   * is a 'mode' meaning it cannot be mixed with

116                                   * other flags */

 

修改以上四个文件后,make编译下载,nor启动。

测试移植yaffs烧写是否成功:

命令:

set bootargs console=ttySAC0,115200 root=/dev/mtdblock3 rootfstype=yaffs2

saveenv

tftp 30000000 uImage_xt; nand erase.part kernel; nand write 30000000 kernel;tftp 30000000 fs_mini_mdev_wds.yaffs2; nand erase.part rootfs; nand write.yaffs 30000000520000$filesize

reset

其中,520000表示rootfs分区的偏移

 

reset重启开发板后yaffs文件系统正常挂载!


移植u-boot-2015.07-rc3之修改代码支持yaffs文件系统烧写(十)


到这里!纯手敲的字数已经超过17000了,有种写到吐的感觉。。。。


本来计划内是再修改一下代码支持一个u-boot.bin既支持NandFlash启动也支持NorFlash启动的,但是研究一天后u-boot都会挂死,直接死在board_init_r中的initr_nand函数上。追踪了半天也没找到确切的原因,如果您完成了这个功能,请您发一份源代码给我邮箱:hello_xt@qq.com,谢谢了!