Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:1234567899Sample Output:
Yes 2469135798
分析:这道题的意思呢,就是给一个不超过20位的数,然后乘以2,如果之后得到的数的组成与之前一样,顺序不同,那么就输出“Yes”,否则就“No”咯。要声明一下,这道题如果用长整形之类的话,那么大数的乘法是会有误差的,可以自己先试试,你会发现得到的数会让你大吃一惊。所以我们需要以另外一种方式来解决,我将每一位作为一个字符输入,然后再转化为整形数,存到一个整形数组中,接着通过两个存储了乘2前后数组成的数组比较,来判断是否相同,由此来输出答案,当然这种方法需要你自己写代码来进行乘法运算。只是乘2,应该都会得。
code:
#include <stdio.h> #include <stdlib.h> int main() { char c; int cnt=0; //计数器 //输入数字 int num[20]; int a[10]={0}; int b[10]={0}; //用于比较的数组a,b,其中元素为含有这个数的个数 while(1) { scanf("%c",&c); if((int)c-48>=0 && (int)c-48<=9) { num[cnt] = (int)c-48; //将数存到数组中 a[num[cnt]]++; //个数+1 cnt++; } else break; } //对数进行*2处理 int i; int flag =0; //进位 for(i=cnt-1;i>=0;i--) //从最低位开始 { num[i] = num[i]*2+flag; //*2后的数 if(num[i]>9 && i!=0) { flag =1; //进位为1 num[i] = num[i]%10; //只留个位 } else flag =0; if(num[0]<=9) b[num[i]]++; //个数+1 } //判断a,b数组是否相同 int sign = 0; for(i=0;i<10;i++) { if(a[i]!=b[i]) { sign = 1; break; } } //输出 if(sign == 0) printf("Yes\n"); else printf("No\n"); for(i=0;i<cnt;i++) { printf("%d",num[i]); } return 0; }