Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798
#include <iostream> #include <string> #include <algorithm> using namespace std; int aa[]; int v1[]; int v2[]; int main() { string ss; while(cin>>ss) { int i; for(i=;i<;i++) { aa[i]=; } for(i=;i<;i++) { v1[i]=; v1[i]=; } int count=; for(i=ss.length()-;i>=;i--) { aa[count++]=ss[i]-''; v1[ss[i]-'']=; } for(i=;i<count;i++) { aa[i]=aa[i]*; } int tem,len; for(i=;i<count;i++) { if(aa[i]>) { tem=aa[i]/; aa[i+]=aa[i+]+tem; aa[i]=aa[i]%; } } if(aa[count]==) len=count; else len=count+; reverse(aa,aa+len); for(i=;i<len;i++) { v2[aa[i]]=; } bool ifis=true; for(i=;i<;i++) { if(v1[i]!=v2[i]) ifis=false; } if(ifis) cout<<"Yes"<<endl; else cout<<"No"<<endl; for(i=;i<len;i++) { cout<<aa[i]; } cout<<endl; } return ; }