Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
思路:
#include<iostream> #include<algorithm> #include<string> using namespace std; int ht[10]={0}; string DoubleS(string str) { int temp=0,r,carry=0; string result=""; for(int i=str.size()-1;i>=0;i--) { ht[str[i]-'0']++; r=(str[i]-'0')*2+carry; carry=r/10; ht[r%10]--; result+=(r%10+'0'); } if(carry!=0) { result+=(carry+'0'); ht[carry]--; } reverse(result.begin(),result.end()); return result; } int main() { string ori,res; cin>>ori; res=DoubleS(ori); bool flag=true; for(int i=0;i<res.size()&&flag;i++) { if(ht[i]!=0) flag=false; } if(flag) cout<<"Yes\n"; else cout<<"No\n"; cout<<res<<endl; return 0; }