【MYSQL】mysql大数据量分页性能优化

时间:2020-12-01 16:33:56

转载地址:

http://www.cnblogs.com/lpfuture/p/5772055.html

https://www.cnblogs.com/shiwenhu/p/5757250.html

P1

1.   直接用limit start, count分页语句, 也是我程序中用的方法:

select * from product limit start, count

当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:

select * from product limit 10, 20   0.016秒

select * from product limit 100, 20   0.016秒

select * from product limit 1000, 20   0.047秒

select * from product limit 10000, 20   0.094秒

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右)                                    select * from product limit 400000, 20   3.229秒

再看我们取最后一页记录的时间

select * from product limit 866613, 20   37.44秒

难怪搜索引擎抓取我们页面的时候经常会报超时,像这种分页最大的页码页显然这种时

间是无法忍受的。

从中我们也能总结出两件事情:

1)limit语句的查询时间与起始记录的位置成正比

2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

2.   对limit分页问题的性能优化方法

利用表的覆盖索引来加速分页查询

我们都知道,利用了索引查询的语句中如果只包含了那个索引列(覆盖索引),那么这种情况会查询很快。

因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。另外Mysql中也有相关的索引缓存,在并发高的时候利用缓存就效果更好了。

在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何:

这次我们之间查询最后一页的数据(利用覆盖索引,只包含id列),如下:

select id from product limit 866613, 20 0.2秒

相对于查询了所有列的37.44秒,提升了大概100多倍的速度

那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:

SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20

查询时间为0.2秒,简直是一个质的飞跃啊,哈哈

另一种写法

SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id

查询时间也很短,赞!

P2:

mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死你的服务器哦。

当一个表数据有几百万的数据的时候成了问题!

如 * from table limit 0,10 这个没有问题 当 limit 200000,10 的时候数据读取就很慢,可以按照一下方法解决

第一页会很快

PERCONA PERFORMANCE CONFERENCE 2009上,来自雅虎的几位工程师带来了一篇”EfficientPagination Using MySQL”的报告

limit10000,20的意思扫描满足条件的10020行,扔掉前面的10000行,返回最后的20行,问题就在这里。

LIMIT 451350 , 30 扫描了45万多行,怪不得慢的都堵死了。

但是

limit 30 这样的语句仅仅扫描30行。

那么如果我们之前记录了最大ID,就可以在这里做文章

举个例子

日常分页SQL语句

select id,name,content from users order by id asc limit 100000,20

扫描100020行

如果记录了上次的最大ID

select id,name,content from users where id>100073 order by id asc limit 20

扫描20行。

总数据有500万左右

以下例子 当时候 select * from wl_tagindex where byname=’f’ order by id limit 300000,10 执行时间是 3.21s

优化后:

select * from (

select id from wl_tagindex

where byname=’f’ order by id limit 300000,10

) a

left join wl_tagindex b on a.id=b.id

执行时间为 0.11s 速度明显提升

这里需要说明的是 我这里用到的字段是 byname ,id 需要把这两个字段做复合索引,否则的话效果提升不明显

总结

当一个数据库表过于庞大,LIMIT offset, length中的offset值过大,则SQL查询语句会非常缓慢,你需增加order by,并且order by字段需要建立索引。
如果使用子查询去优化LIMIT的话,则子查询必须是连续的,某种意义来讲,子查询不应该有where条件,where会过滤数据,使数据失去连续性。
如果你查询的记录比较大,并且数据传输量比较大,比如包含了text类型的field,则可以通过建立子查询。
SELECT id,title,content FROM items WHERE id IN (SELECT id FROM items ORDER BY id limit 900000, 10);
如果limit语句的offset较大,你可以通过传递pk键值来减小offset = 0,这个主键最好是int类型并且auto_increment
SELECT * FROM users WHERE uid > 456891 ORDER BY uid LIMIT 0, 10;
这条语句,大意如下:
SELECT * FROM users WHERE uid >= (SELECT uid FROM users ORDER BY uid limit 895682, 1) limit 0, 10;
如果limit的offset值过大,用户也会翻页疲劳,你可以设置一个offset最大的,超过了可以另行处理,一般连续翻页过大,用户体验很差,则应该提供更优的用户体验给用户。 limit 分页优化方法 1.子查询优化法
先找出第一条数据,然后大于等于这条数据的id就是要获取的数据
缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性 实验下 mysql> set profi=1;
Query OK, 0 rows affected (0.00 sec) mysql> select count(*) from Member;
+———-+
| count(*) |
+———-+
| 169566 |
+———-+
1 row in set (0.00 sec) mysql> pager grep !~-
PAGER set to ‘grep !~-‘ mysql> select * from Member limit 10, 100;
100 rows in set (0.00 sec) mysql> select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100;
100 rows in set (0.00 sec) mysql> select * from Member limit 1000, 100;
100 rows in set (0.01 sec) mysql> select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100;
100 rows in set (0.00 sec) mysql> select * from Member limit 100000, 100;
100 rows in set (0.10 sec) mysql> select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100;
100 rows in set (0.02 sec) mysql> nopager
PAGER set to stdout mysql> show profilesG
*************************** 1. row ***************************
Query_ID: 1
Duration: 0.00003300
Query: select count(*) from Member *************************** 2. row ***************************
Query_ID: 2
Duration: 0.00167000
Query: select * from Member limit 10, 100
*************************** 3. row ***************************
Query_ID: 3
Duration: 0.00112400
Query: select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100 *************************** 4. row ***************************
Query_ID: 4
Duration: 0.00263200
Query: select * from Member limit 1000, 100
*************************** 5. row ***************************
Query_ID: 5
Duration: 0.00134000
Query: select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100 *************************** 6. row ***************************
Query_ID: 6
Duration: 0.09956700
Query: select * from Member limit 100000, 100
*************************** 7. row ***************************
Query_ID: 7
Duration: 0.02447700
Query: select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100 从结果中可以得知,当偏移1000以上使用子查询法可以有效的提高性能。 2.倒排表优化法
倒排表法类似建立索引,用一张表来维护页数,然后通过高效的连接得到数据 缺点:只适合数据数固定的情况,数据不能删除,维护页表困难 3.反向查找优化法
当偏移超过一半记录数的时候,先用排序,这样偏移就反转了 缺点:order by优化比较麻烦,要增加索引,索引影响数据的修改效率,并且要知道总记录数
,偏移大于数据的一半 引用
limit偏移算法:
正向查找: (当前页 – 1) * 页长度
反向查找: 总记录 – 当前页 * 页长度 做下实验,看看性能如何 总记录数:1,628,775
每页记录数: 40
总页数:1,628,775 / 40 = 40720
中间页数:40720 / 2 = 20360 第21000页
正向查找SQL:
Sql代码
SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 839960, 40
时间:1.8696 秒 反向查找sql:
Sql代码
SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 788775, 40
时间:1.8336 秒 第30000页
正向查找SQL:
Sql代码 1.SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40
SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40 时间:2.6493 秒 反向查找sql:
Sql代码
1.SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40
SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40 时间:1.0035 秒 注意,反向查找的结果是是降序desc的,并且InputDate是记录的插入时间,也可以用主键联合索引,但是不方便。 4.limit限制优化法
把limit偏移量限制低于某个数。。超过这个数等于没数据,我记得alibaba的dba说过他们是这样做的 5.只查索引法