在监听器初始化Job、JobTracker相应TaskTracker心跳、调度器分配task源码级分析中我们分析的Tasktracker发送心跳的机制,这一节我们分析TaskTracker接受JobTracker的响应信息后的工作内容。
TaskTracker中的transmitHeartBeat方法通过调用JobTracker.heartbeat方法获得心跳的响应信息HeartbeatResponse,然后返回给TaskTracker.offerService()方法。HeartbeatResponse中包含了以下几个重要的信息:
(1)可能包含一个cleanup task或者一个setup task,一个心跳只能包含一个这种类型的task。优先考虑map的cleanup,然后map的setup,然后reduce的cleanup,然后reduce的setup;
(2)调度器分配的MapTask(可以有多个,最多有一个非本地的Map(而且一旦有此种类的Map,则会停止分配Map,返回Map列表))或者ReduceTask(一次心跳最多分配1个);
(3)TaskTracker上对应的一些应该被Kill的Task;
(4)TaskTracker上对应的一些应该被Kill的Job;
(5)TaskTracker上可以保存数据的Task;
(6)下一次的心跳间隔;
(7)如果JobTracker重启了,还会有需要恢复的Job列表;
(8)还有就是只返回重启命令ReinitTrackerAction。如果TaskTracker不是第一次发送心跳链接JobTracker,且JobTracker也没重启,并且没有此TaskTracker上一次心跳信息,说明可能存在严重的问题,因此让此tasktracker重新初始化。
TaskTracker.offerService()方法是一个while循环,始终是执行等待心跳时间发送心跳,接受响应信息,分析响应信息中的任务。接受到响应信息HeartbeatResponse之后:
一、获取恢复作业列表(如果响应信息中有要恢复的作业),重置各个Job的状态,然后将所有正在运行的处于SHUFFLE阶段的Reduce Task回滚放入shouldReset中;
二、然后调用HeartbeatResponse的getActions()函数获得JobTracker传过来的所有指令即一个TaskTrackerAction数组:TaskTrackerAction[] actions = heartbeatResponse.getActions()。
三、如果actions是重新初始化命令则会直接返回State.STALE到run()中,会跳出内层while循环,然后外层while继续执行,调用initialize()方法进行初始化,并再次执行offerService()。
四、重置心跳间隔heartbeatInterval = heartbeatResponse.getHeartbeatInterval()
五、置justStarted、justInited都为false表示已经启动服务,并已连接JobTracker
六、遍历actions数组:
(1)如果是LaunchTaskAction,则调用addToTaskQueue((LaunchTaskAction)action)将Action添加到任务队列中,加入TaskLauncher线程的执行队列。addToTaskQueue方法会根据LaunchTaskAction的类型将这个action加入mapLauncher或者reduceLauncher,这两个launcher都是TaskLauncher extends Thread的对象,这两个线程对象都是在initialize()时初始化,会通过addToTaskQueue(action)方法将action加入 List<TaskInProgress> tasksToLaunch列表,注意这个TaskInProgress是TaskTracker.TaskInProgress,而非MapRed包中的 TaskInProgress类。TaskLauncher类的run方法会始终监控tasksToLaunch,一旦发现有新的任务,就获取第一个task,并检查是否可以运行此task等待有足够的slot来运行此task,还要判断(canBeLaunched()方法)此task的运行状态必须是UNASSIGNED、FAILED_UNCLEAN、KILLED_UNCLEAN三者之一才可以执行。最终通过startNewTask(tip)方法来执行。
(2)如果是CommitTaskAction,就加入commitResponses.add(commitAction.getTaskID()),这类任务指的是处理完数据之后,将最终结果从临时目录转移到最终目录的过程,只有将输出结果直接写到HDFS上的任务才会经历这个过程,只有两类任务:reduce task和map-only类型的map task。不管是map task、Reduce task、setup task、cleanup job task、cleanup task task执行完后都会调用done(umbilical, reporter)该方法会通过层层调用找到commitResponses等待JobTracker的commit命令。
(3)其他则直接加入tasksToCleanup.put(action),包括杀死任务或作业。taskCleanupThread线程会始终监控tasksToCleanup队列,从中take一个TaskTrackerAction action,如果这个action是KillJobAction类型,就调用方法purgeJob((KillJobAction) action)来处理,这个方法会从runningJobs获取对应的RunningJob,如果允许清理文件会将这个job对应的文件都删除,将这个RunningJob对应的所有task清空;如果这个action是KillTaskAction,就调用processKillTaskAction((KillTaskAction) action)来处理:会从tasks中获取对应的TaskInProgress,然后从runningJobs中找到对应的RunningJob,并从RunningJob中的task列表中删除这个task。
。
七、markUnresponsiveTasks(),杀死一定时间没没有汇报进度的task
八、killOverflowingTasks(),当剩余磁盘空间小于mapred.local.dir.minspacekill(默认为0)时,寻找合适的任务将其杀掉以释放空间
九、到这已经做了清理和恢复工作,所以如果acceptNewTasks==false并且此tasktracker处于空闲,就将acceptNewTasks=true,可以接受新的任务了
十、checkJettyPort(server.getPort()),官方给的解释是:为了谨慎,因为有些情况获得的jetty端口不一致。检查是如果端口号小于0,shuttingDown = true这样会使得run中的两层循环、offerService()中的while循环都退出,致使main()结束运行,该tasktracker关闭。
上面的六中介绍了各种类型的任务,其中map task和reduce task都是通过startNewTask(tip)方法来启动的。这个方法对每个TaskTracker.TaskInProgress都会启动一个单独的线程来执行,这个线程的run方法主要工作是,一旦运行过程出错,异常处理会将这个tip杀死,并清理相对于的一些数据。:
RunningJob rjob = localizeJob(tip);
tip.getTask().setJobFile(rjob.getLocalizedJobConf().toString());
// Localization is done. Neither rjob.jobConf nor rjob.ugi can be null
launchTaskForJob(tip, new JobConf(rjob.getJobConf()), rjob); //执行task
(1)localizeJob(tip)方法是确保首先对作业进行本地化,即第一个tip要对作业进行本地化,后续的tip只对任务本地化。会调用initializeJob(t, rjob, ttAddr)方法对作业进行本地化,会从HDFS下载JobToken和job.xml到本地,然后通过TaskController.initializeJob方法完成剩余的工作,默认是DefaultTaskController,这个initializeJob方法会在本地创建一些目录,并下载job.jar到本地,创建job-acls.xml保存作业访问控制权限等信息。在这个方法中除了作业初始化其他的任务初始化基本没做什么工作。
(2)launchTaskForJob(tip, new JobConf(rjob.getJobConf()), rjob)方法来执行,会调用TaskTracker.TaskInProgress的launchTask()函数启动Task,如果这个task的状态是UNASSIGNED、FAILED_UNCLEAN、KILLED_UNCLEAN三者之一,就调用方法对localizeTask(task)对task做一些配置信息,然后创建一个TaskRunner,如果是map类型的任务会创建MapTaskRunner,如果是reduce类型的任务会创建ReduceTaskRunner,但任务的启动最终均是其父类TaskRunner.run()方法完成。启动TaskRunner。TaskRunner是一个线程类,其run()方法代码如下:
@Override
public final void run() {
String errorInfo = "Child Error";
try { //before preparing the job localize
//all the archives
TaskAttemptID taskid = t.getTaskID();
final LocalDirAllocator lDirAlloc = new LocalDirAllocator("mapred.local.dir");
//simply get the location of the workDir and pass it to the child. The
//child will do the actual dir creation
final File workDir =
new File(new Path(localdirs[rand.nextInt(localdirs.length)],
TaskTracker.getTaskWorkDir(t.getUser(), taskid.getJobID().toString(),
taskid.toString(),
t.isTaskCleanupTask())).toString()); String user = tip.getUGI().getUserName(); // Set up the child task's configuration. After this call, no localization
// of files should happen in the TaskTracker's process space. Any changes to
// the conf object after this will NOT be reflected to the child.
// setupChildTaskConfiguration(lDirAlloc); if (!prepare()) {
return;
} // Accumulates class paths for child.
List<String> classPaths = getClassPaths(conf, workDir,
taskDistributedCacheManager); long logSize = TaskLog.getTaskLogLength(conf); // Build exec child JVM args.
Vector<String> vargs = getVMArgs(taskid, workDir, classPaths, logSize); tracker.addToMemoryManager(t.getTaskID(), t.isMapTask(), conf); // set memory limit using ulimit if feasible and necessary ...
String setup = getVMSetupCmd();
// Set up the redirection of the task's stdout and stderr streams
File[] logFiles = prepareLogFiles(taskid, t.isTaskCleanupTask());
File stdout = logFiles[0];
File stderr = logFiles[1];
tracker.getTaskTrackerInstrumentation().reportTaskLaunch(taskid, stdout,
stderr); Map<String, String> env = new HashMap<String, String>();
errorInfo = getVMEnvironment(errorInfo, user, workDir, conf, env, taskid,
logSize); // flatten the env as a set of export commands
List <String> setupCmds = new ArrayList<String>();
for(Entry<String, String> entry : env.entrySet()) {
StringBuffer sb = new StringBuffer();
sb.append("export ");
sb.append(entry.getKey());
sb.append("=\"");
sb.append(entry.getValue());
sb.append("\"");
setupCmds.add(sb.toString());
}
setupCmds.add(setup); launchJvmAndWait(setupCmds, vargs, stdout, stderr, logSize, workDir);
tracker.getTaskTrackerInstrumentation().reportTaskEnd(t.getTaskID());
if (exitCodeSet) {
if (!killed && exitCode != 0) {
if (exitCode == 65) {
tracker.getTaskTrackerInstrumentation().taskFailedPing(t.getTaskID());
}
throw new IOException("Task process exit with nonzero status of " +
exitCode + ".");
}
}
} catch (FSError e) {
LOG.fatal("FSError", e);
try {
tracker.fsErrorInternal(t.getTaskID(), e.getMessage());
} catch (IOException ie) {
LOG.fatal(t.getTaskID()+" reporting FSError", ie);
}
} catch (Throwable throwable) {
LOG.warn(t.getTaskID() + " : " + errorInfo, throwable);
Throwable causeThrowable = new Throwable(errorInfo, throwable);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
causeThrowable.printStackTrace(new PrintStream(baos));
try {
tracker.reportDiagnosticInfoInternal(t.getTaskID(), baos.toString());
} catch (IOException e) {
LOG.warn(t.getTaskID()+" Reporting Diagnostics", e);
}
} finally { // It is safe to call TaskTracker.TaskInProgress.reportTaskFinished with
// *false* since the task has either
// a) SUCCEEDED - which means commit has been done
// b) FAILED - which means we do not need to commit
tip.reportTaskFinished(false);
}
}
run方法主要是做一些准备工作,包括通过getVMArgs方法获取JVM的参数信息、通过getVMEnvironment获得环境变量信息然后组合成启动命令setupCmds;最终通过launchJvmAndWait(setupCmds, vargs, stdout, stderr, logSize, workDir)交给jvmManager对象启动一个JVM。
JvmManager负责管理TaskTracker上所有正在使用的JVM,包括启动、停止、杀死JVM等。一般来说map和Reduce占用的资源量不同,所以JvmManager使用mapJvmManager和reduceJvmManager来分别管理两种类型的task对应的JVM。且要满足:
A、两种task对应的slot的数量均不能超过此TaskTracker中各自最大slot数量;
B、每个JVM只能同时运行一个任务;
C、JVM可复用,且有次数限制和仅限同一个作业的同类型任务使用。
launchJvmAndWait方法会调用jvmManager.launchJvm(this, jvmManager.constructJvmEnv(setup, vargs, stdout,stderr, logSize, workDir, conf))来启动task。这个方法会根据task的类型,选择mapJvmManager或者reduceJvmManager的reapJvm(t, env)来启动JVM,两种类型(mapJvmManager、reduceJvmManager)使用的是同一个方法。该方法代码如下:
private synchronized void reapJvm(
TaskRunner t, JvmEnv env) throws IOException, InterruptedException {
if (t.getTaskInProgress().wasKilled()) {
//the task was killed in-flight
//no need to do the rest of the operations
return;
}
boolean spawnNewJvm = false;
JobID jobId = t.getTask().getJobID();
//Check whether there is a free slot to start a new JVM.
//,or, Kill a (idle) JVM and launch a new one
//When this method is called, we *must*
// (1) spawn a new JVM (if we are below the max)
// (2) find an idle JVM (that belongs to the same job), or,
// (3) kill an idle JVM (from a different job)
// (the order of return is in the order above)
int numJvmsSpawned = jvmIdToRunner.size();
JvmRunner runnerToKill = null;
if (numJvmsSpawned >= maxJvms) {
//go through the list of JVMs for all jobs.
Iterator<Map.Entry<JVMId, JvmRunner>> jvmIter =
jvmIdToRunner.entrySet().iterator(); while (jvmIter.hasNext()) {
JvmRunner jvmRunner = jvmIter.next().getValue();
JobID jId = jvmRunner.jvmId.getJobId();
//look for a free JVM for this job; if one exists then just break
if (jId.equals(jobId) && !jvmRunner.isBusy() && !jvmRunner.ranAll()){
setRunningTaskForJvm(jvmRunner.jvmId, t); //reserve the JVM
LOG.info("No new JVM spawned for jobId/taskid: " +
jobId+"/"+t.getTask().getTaskID() +
". Attempting to reuse: " + jvmRunner.jvmId);
return;
}
//Cases when a JVM is killed:
// (1) the JVM under consideration belongs to the same job
// (passed in the argument). In this case, kill only when
// the JVM ran all the tasks it was scheduled to run (in terms
// of count).
// (2) the JVM under consideration belongs to a different job and is
// currently not busy
//But in both the above cases, we see if we can assign the current
//task to an idle JVM (hence we continue the loop even on a match)
if ((jId.equals(jobId) && jvmRunner.ranAll()) ||
(!jId.equals(jobId) && !jvmRunner.isBusy())) {
runnerToKill = jvmRunner;
spawnNewJvm = true;
}
}
} else {
spawnNewJvm = true;
} if (spawnNewJvm) {
if (runnerToKill != null) {
LOG.info("Killing JVM: " + runnerToKill.jvmId);
killJvmRunner(runnerToKill);
}
//888888888888888888888**********************************
spawnNewJvm(jobId, env, t); //在此运行Child
return;
}
//*MUST* never reach this
LOG.fatal("Inconsistent state!!! " +
"JVM Manager reached an unstable state " +
"while reaping a JVM for task: " + t.getTask().getTaskID()+
" " + getDetails() + ". Aborting. ");
System.exit(-1);
}
A、先检查已启动的JVM数是否低于对应类型(map、reduce)的slot的上限,低于的话直接启动一个JVM,否则执行B;
B、检查所有已启动的JVM(jvmIdToRunner)找到满足:(1)当前状态为空对应jvmRunner.isBusy();(2)复用次数未超过上限对应jvmRunner.ranAll();(3)与将要启动的任务同属一个作业对应jId.equals(jobId);这样的JVM,则可直接复用不需启动新的JVM,保留此JVM对应setRunningTaskForJvm(jvmRunner.jvmId, t)。
C、查找当前TaskTracker所有已启动的JVM,满足一下之一:(1)复用次数已达上限且与新任务同属一个作业;(2)当前处于空闲状态但与新任务不属于一个作业;就直接杀死该JVM对应方法killJvmRunner(runnerToKill),并启动一个新的JVM
通过spawnNewJvm(jobId, env, t)创建一个JvmRunner线程,将其加入jvmIdToRunner,调用setRunningTaskForJvm修改一些数据结构,启动这个JvmRunner。其runn方法直接调用runChild(env),代码如下:
public void runChild(JvmEnv env) throws IOException, InterruptedException{
int exitCode = 0;
try {
env.vargs.add(Integer.toString(jvmId.getId()));
TaskRunner runner = jvmToRunningTask.get(jvmId);
if (runner != null) {
Task task = runner.getTask();
//Launch the task controller to run task JVM
String user = task.getUser();
TaskAttemptID taskAttemptId = task.getTaskID();
String taskAttemptIdStr = task.isTaskCleanupTask() ?
(taskAttemptId.toString() + TaskTracker.TASK_CLEANUP_SUFFIX) :
taskAttemptId.toString();
exitCode = tracker.getTaskController().launchTask(user,//DefaultTaskController++++++++++++++执行任务
jvmId.jobId.toString(), taskAttemptIdStr, env.setup,
env.vargs, env.workDir, env.stdout.toString(),
env.stderr.toString());
}
} catch (IOException ioe) {
// do nothing
// error and output are appropriately redirected
} finally { // handle the exit code
// although the process has exited before we get here,
// make sure the entire process group has also been killed.
kill();
updateOnJvmExit(jvmId, exitCode);
LOG.info("JVM : " + jvmId + " exited with exit code " + exitCode
+ ". Number of tasks it ran: " + numTasksRan);
deleteWorkDir(tracker, firstTask);
}
}
最重要的是tracker.getTaskController().launchTask,该方法代码如下(默认是DefaultTaskController):
/**
* Create all of the directories for the task and launches the child jvm.
* @param user the user name
* @param attemptId the attempt id
* @throws IOException
*/
@Override
public int launchTask(String user,
String jobId,
String attemptId,
List<String> setup,
List<String> jvmArguments,
File currentWorkDirectory,
String stdout,
String stderr) throws IOException {
ShellCommandExecutor shExec = null;
try {
FileSystem localFs = FileSystem.getLocal(getConf()); //create the attempt dirs
new Localizer(localFs,
getConf().getStrings(JobConf.MAPRED_LOCAL_DIR_PROPERTY)).
initializeAttemptDirs(user, jobId, attemptId); // create the working-directory of the task
if (!currentWorkDirectory.mkdir()) {
throw new IOException("Mkdirs failed to create "
+ currentWorkDirectory.toString());
} //mkdir the loglocation
String logLocation = TaskLog.getAttemptDir(jobId, attemptId).toString();
if (!localFs.mkdirs(new Path(logLocation))) {
throw new IOException("Mkdirs failed to create "
+ logLocation);
}
//read the configuration for the job
FileSystem rawFs = FileSystem.getLocal(getConf()).getRaw();
long logSize = 0; //TODO MAPREDUCE-1100
// get the JVM command line.
String cmdLine =
TaskLog.buildCommandLine(setup, jvmArguments,
new File(stdout), new File(stderr), logSize, true); // write the command to a file in the
// task specific cache directory
// TODO copy to user dir
Path p = new Path(allocator.getLocalPathForWrite(
TaskTracker.getPrivateDirTaskScriptLocation(user, jobId, attemptId),
getConf()), COMMAND_FILE); //"taskjvm.sh"文件 String commandFile = writeCommand(cmdLine, rawFs, p);//将命令写入"taskjvm.sh",p是文件名
rawFs.setPermission(p, TaskController.TASK_LAUNCH_SCRIPT_PERMISSION);
shExec = new ShellCommandExecutor(new String[]{
"bash", "-c", commandFile},
currentWorkDirectory);
shExec.execute();
} catch (Exception e) {
if (shExec == null) {
return -1;
}
int exitCode = shExec.getExitCode();
LOG.warn("Exit code from task is : " + exitCode);
LOG.info("Output from DefaultTaskController's launchTask follows:");
logOutput(shExec.getOutput());
return exitCode;
}
return 0;
}
launchTask方法首先会在磁盘上创建任务工作目录,接着讲任务启动命令写入shell脚本”taskjvm.sh“中,并构造一个ShellCommandExecutor对象调用其execute()方法通过ProcessBuilder执行命令"bash -c taskjvm.sh",这样就启动了一个JVM来执行task。脚本最终会启动一个org.apache.hadoop.mapred.Child类来运行任务的。其main方法内容较长代码如下:
//真正的map task和reduce task都是在Child进程中运行的,Child的main函数的主要逻辑如下
public static void main(String[] args) throws Throwable {
LOG.debug("Child starting");
//创建RPC Client,启动日志同步线程
final JobConf defaultConf = new JobConf();
String host = args[0];
int port = Integer.parseInt(args[1]);
final InetSocketAddress address = NetUtils.makeSocketAddr(host, port);
final TaskAttemptID firstTaskid = TaskAttemptID.forName(args[2]);
final String logLocation = args[3];
final int SLEEP_LONGER_COUNT = 5;
int jvmIdInt = Integer.parseInt(args[4]);
JVMId jvmId = new JVMId(firstTaskid.getJobID(),firstTaskid.isMap(),jvmIdInt);
String prefix = firstTaskid.isMap() ? "MapTask" : "ReduceTask"; cwd = System.getenv().get(TaskRunner.HADOOP_WORK_DIR);
if (cwd == null) {
throw new IOException("Environment variable " +
TaskRunner.HADOOP_WORK_DIR + " is not set");
} // file name is passed thru env
String jobTokenFile =
System.getenv().get(UserGroupInformation.HADOOP_TOKEN_FILE_LOCATION);
Credentials credentials =
TokenCache.loadTokens(jobTokenFile, defaultConf);
LOG.debug("loading token. # keys =" +credentials.numberOfSecretKeys() +
"; from file=" + jobTokenFile); Token<JobTokenIdentifier> jt = TokenCache.getJobToken(credentials);
SecurityUtil.setTokenService(jt, address);
UserGroupInformation current = UserGroupInformation.getCurrentUser();
current.addToken(jt); UserGroupInformation taskOwner
= UserGroupInformation.createRemoteUser(firstTaskid.getJobID().toString());
taskOwner.addToken(jt); // Set the credentials
defaultConf.setCredentials(credentials); final TaskUmbilicalProtocol umbilical =
taskOwner.doAs(new PrivilegedExceptionAction<TaskUmbilicalProtocol>() {
@Override
public TaskUmbilicalProtocol run() throws Exception {
return (TaskUmbilicalProtocol)RPC.getProxy(TaskUmbilicalProtocol.class,
TaskUmbilicalProtocol.versionID,
address,
defaultConf);
}
}); int numTasksToExecute = -1; //-1 signifies "no limit"
int numTasksExecuted = 0;
Runtime.getRuntime().addShutdownHook(new Thread() {
public void run() {
try {
if (taskid != null) {
TaskLog.syncLogs
(logLocation, taskid, isCleanup, currentJobSegmented);
}
} catch (Throwable throwable) {
}
}
});
Thread t = new Thread() {
public void run() {
//every so often wake up and syncLogs so that we can track
//logs of the currently running task
while (true) {
try {
Thread.sleep(5000);
if (taskid != null) {
TaskLog.syncLogs
(logLocation, taskid, isCleanup, currentJobSegmented);
}
} catch (InterruptedException ie) {
} catch (IOException iee) {
LOG.error("Error in syncLogs: " + iee);
System.exit(-1);
}
}
}
};
t.setName("Thread for syncLogs");
t.setDaemon(true);
t.start(); String pid = "";
if (!Shell.WINDOWS) {
pid = System.getenv().get("JVM_PID");
}
JvmContext context = new JvmContext(jvmId, pid);
int idleLoopCount = 0;
Task task = null; UserGroupInformation childUGI = null; final JvmContext jvmContext = context;
try {
while (true) {//不断询问TaskTracker,以获得新任务
taskid = null;
currentJobSegmented = true;
//从TaskTracker通过网络通信得到JvmTask对象
JvmTask myTask = umbilical.getTask(context);//获取新任务
if (myTask.shouldDie()) {//JVM所属作业不存在或者被杀死
break;
} else {
if (myTask.getTask() == null) { //暂时没有新任务
taskid = null;
currentJobSegmented = true;
//等待一段时间继续询问TaskTracker
if (++idleLoopCount >= SLEEP_LONGER_COUNT) {
//we sleep for a bigger interval when we don't receive
//tasks for a while
Thread.sleep(1500);
} else {
Thread.sleep(500);
}
continue;
}
}
//有新任务,进行本地化
idleLoopCount = 0;
task = myTask.getTask();
task.setJvmContext(jvmContext);
taskid = task.getTaskID(); // Create the JobConf and determine if this job gets segmented task logs
final JobConf job = new JobConf(task.getJobFile());
currentJobSegmented = logIsSegmented(job); isCleanup = task.isTaskCleanupTask();
// reset the statistics for the task
FileSystem.clearStatistics(); // Set credentials
job.setCredentials(defaultConf.getCredentials());
//forcefully turn off caching for localfs. All cached FileSystems
//are closed during the JVM shutdown. We do certain
//localfs operations in the shutdown hook, and we don't
//want the localfs to be "closed"
job.setBoolean("fs.file.impl.disable.cache", false); // set the jobTokenFile into task
task.setJobTokenSecret(JobTokenSecretManager.
createSecretKey(jt.getPassword())); // setup the child's mapred-local-dir. The child is now sandboxed and
// can only see files down and under attemtdir only.
TaskRunner.setupChildMapredLocalDirs(task, job); // setup the child's attempt directories
localizeTask(task, job, logLocation); //setupWorkDir actually sets up the symlinks for the distributed
//cache. After a task exits we wipe the workdir clean, and hence
//the symlinks have to be rebuilt.
TaskRunner.setupWorkDir(job, new File(cwd)); //create the index file so that the log files
//are viewable immediately
TaskLog.syncLogs
(logLocation, taskid, isCleanup, logIsSegmented(job)); numTasksToExecute = job.getNumTasksToExecutePerJvm();
assert(numTasksToExecute != 0); task.setConf(job); // Initiate Java VM metrics
initMetrics(prefix, jvmId.toString(), job.getSessionId()); LOG.debug("Creating remote user to execute task: " + job.get("user.name"));
childUGI = UserGroupInformation.createRemoteUser(job.get("user.name"));
// Add tokens to new user so that it may execute its task correctly.
for(Token<?> token : UserGroupInformation.getCurrentUser().getTokens()) {
childUGI.addToken(token);
} // Create a final reference to the task for the doAs block
final Task taskFinal = task;
childUGI.doAs(new PrivilegedExceptionAction<Object>() {
@Override
public Object run() throws Exception {
try {
// use job-specified working directory
FileSystem.get(job).setWorkingDirectory(job.getWorkingDirectory());
taskFinal.run(job, umbilical); // run the task,启动任务
} finally {
TaskLog.syncLogs
(logLocation, taskid, isCleanup, logIsSegmented(job));
TaskLogsTruncater trunc = new TaskLogsTruncater(defaultConf);
trunc.truncateLogs(new JVMInfo(
TaskLog.getAttemptDir(taskFinal.getTaskID(),
taskFinal.isTaskCleanupTask()), Arrays.asList(taskFinal)));
} return null;
}
});
//如果JVM服用次数达到上限数目,则直接退出
if (numTasksToExecute > 0 && ++numTasksExecuted == numTasksToExecute) {
break;
}
}
} catch (FSError e) {
LOG.fatal("FSError from child", e);
umbilical.fsError(taskid, e.getMessage(), jvmContext);
} catch (Exception exception) {
LOG.warn("Error running child", exception);
try {
if (task != null) {
// do cleanup for the task
if(childUGI == null) {
task.taskCleanup(umbilical);
} else {
final Task taskFinal = task;
childUGI.doAs(new PrivilegedExceptionAction<Object>() {
@Override
public Object run() throws Exception {
taskFinal.taskCleanup(umbilical);
return null;
}
});
}
}
} catch (Exception e) {
LOG.info("Error cleaning up", e);
}
// Report back any failures, for diagnostic purposes
ByteArrayOutputStream baos = new ByteArrayOutputStream();
exception.printStackTrace(new PrintStream(baos));
if (taskid != null) {
umbilical.reportDiagnosticInfo(taskid, baos.toString(), jvmContext);
}
} catch (Throwable throwable) {
LOG.fatal("Error running child : "
+ StringUtils.stringifyException(throwable));
if (taskid != null) {
Throwable tCause = throwable.getCause();
String cause = tCause == null
? throwable.getMessage()
: StringUtils.stringifyException(tCause);
umbilical.fatalError(taskid, cause, jvmContext);
}
} finally {
RPC.stopProxy(umbilical);
shutdownMetrics();
// Shutting down log4j of the child-vm...
// This assumes that on return from Task.run()
// there is no more logging done.
LogManager.shutdown();
}
}
上述代码涉及的任务本地化内容有:(1)将任务相关的一些配置参数添加到作业配置JobConf中,有同名则覆盖,形成任务自己的配置JobConf,并采用轮询的方式选择一个目录存放对应任务对象的配置文件,也就是任务配置文件由两部分组成:一个是作业的JobConf一个是任务自己的特定的参数;(2)在目录中建立指向分布式缓存中所有数据文件的链接,以便能够直接使用这些文件。taskFinal.run(job,umbilical)方法会调用相应的MapTask或者ReduceTask的run方法来执行,这以后再分析。
上述reapJvm方法中的A和C都会启动一个JVM,B使用的是旧的JVM,那是如何执行的呢?答案就在Child的main方法中,其中int jvmIdInt = Integer.parseInt(args[4]);这个Id是一个整数类型,是父进程最初创建该jvmRunner时生成的,他是一个随机数,联合jobID一起标示了一个运行特定job任务的特定进程;然后main中的while循环会通过JvmTask myTask = umbilical.getTask(context)不断的去通过jvmManager.getTaskForJvm(jvmId)获取TaskTracker上关于指定的JVM上的新的task,从而使得复用的JVM中的task执行。
到目前为止tasktracker端接受Jobtracker的心跳相应信息并对各种任务类型的启动过程有了初步的了解,下一步就是map和reduce的执行过程了。
参考:1、董西成,《hadoop技术内幕---深入理解MapReduce架构设计与实现原理》
2、http://guoyunsky.iteye.com/blog/1729457 ,这有关于复用JVM的说明